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Abstract

The two dimensional electron gas (2DEG) that forms in ultra-clean GaAs/Al-

GaAs heterostructures at low temperature is a versatile platform for the study of

low dimensional physics and many-body interactions. Most famously, it hosts the

fractional quantum Hall effect (FQHE) - a series of exotic states formed by the

condensation of the electrons into a Laughlin liquid with fractionally charged exci-

tations. One state in particular, the ν = 5/2 fractional quantum Hall state, remains

the subject of intense theoretical and experimental effort, due to the conjecture that

its low-energy excitations may obey non-Abelian quantum statistics. This thesis

describes a novel experimental technique to measure the specific heat of the 2DEG

and results in the second Landau level, including the first ever measurements of

specific heat in absolute units at ν = 5/2.

The first major result discussed in this thesis is the observation of the ν = 5/2

fractional quantum Hall effect in the Corbino geometry. Unlike in conventional

geometries there is no edge connecting the two contacts, which enables us to study

bulk transport without complications due to the physics of the quantum Hall edge.

The next major result we describe is a direct measurement of the electron-

phonon thermal relaxation time and thermal conductivity, from which we determine

the specific heat of the 2DEG. We find thermal time constants of a few microseconds

in the temperature range 50-100 mK for several filling factors in the second Landau

level, with thermal relaxation somewhat slower at ν = 5/2 than other filling factors.

The specific heat of the 2DEG is significantly enhanced above its value in the absence

of magnetic field and follows an activation-like behaviour, as expected for a gapped

state. By integrating the specific heat, we obtain the entropy of the 2DEG, and

find remarkable agreement with previously reported measurements of the entropy

via longitudinal thermopower at both ν = 5/2 and ν = 7/3. Further refinement of

our specific heat measurement technique could lead to detection of the non-Abelian

entropy at ν = 5/2.
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Abrégé

Le gaz électronique bidimensionnel qui se forme dans une hétérostructure de

GaAs/AlGaAs de très haute mobilité à basse temperature est une plate-forme poly-

valente pour l’étude de la physique en basses dimensions et des interactions multi-

corps. L’effet le plus célèbre est l’effet Hall quantique fractionnaire (EHQF): une

série d’états exotiques qui se forment quand les électrons se condensent en un liquide

de Laughlin avec excitations de charges fractionnaires. Un état en particulier, l’état

de Hall quantique fractionnaire de ν = 5/2, est déjà un sujet de recherche théorique

et expérimental intensif, parce qu’il y a une conjecture que ses excitations de basse

énergie obéissent aux statistiques quantiques non abéliennes. Cette thèse décrit une

technique expérimentale pour mesurer la chaleur spécifique d’un gaz électronique

bidimensionnel et les résultats dans le deuxiéme niveau de Landau, incluant les

premières prises de mesures de chaleur spécifique dans l’état 5/2.

Le premier résultat abordé dans cette thèse est l’observation de l’état ν = 5/2

pour une géométrie de Corbino. Contrairement aux autres géométries convention-

nelles il n’y a pas de bords qui relient les deux bornes, permettant d’étudier le

transport électronique dans le volume de l’échantillon sans les complications dues

aux états de Hall quantique des bords.

Le deuxième résultat dans cette thèse est la mesure directe de la constante de

temps de relaxation thermique electron-phonon et la conductivité thermique per-

mettant de déterminer la chaleur spécifique d’un gaz électronique bidimensionnel.

Des constantes de temps de l’ordre de quelques microsecondes à 50-100 mK dans

le deuxiéme niveau de Landau sont obtenues, dont la plus lente est observée pour

l’état 5/2. La chaleur spécifique est augmentée considérablement au-dessus de sa

valeur en absence de champs magnétique et suit un comportement semblable à

celui de l’activation, comme prévu pour un état incompressible. En intégrant la

chaleur spécifique, nous obtenons l’entropie du 2DEG et avons trouvé un accord

remarquable avec les mesures précédemment reportées de l’entropie via une puis-

sance thermoélectrique longitudinale pour l’état 5/2 et l’état 7/3. Un affinement

supplémentaire de notre technique de mesure de la chaleur spécifique pourrait mener
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à la détection de l’entropie non abélienne à l’état 5/2.
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Chapter 1

Introduction

1.1 Introduction

According to modern physics, all particles may be classified into two categories:

bosons and fermions. Bosons, such as photons, may occupy the same quantum state;

hence, light can be amplified coherently in lasers and used to send information down

fibre optic lines, create holograms, or even cut steel. Conversely, fermions, such as

electrons, obey the Pauli exclusion principle: each one demands its own state, and

thus they obey Fermi statistics. However, it turns out that this restriction to two

classes of particles arises from the three dimensional nature of our universe. In a

two dimensional world, there could be other classes of particles. Such particles,

called anyons - because they can have “any” phase - would break the boson-fermion

dichotomy with striking results. In particular, so-called non-Abelian (NA) anyons

could be used to build a topological quantum computer that would be inherently

robust against noise and decoherence. In this thesis, I will discuss progress toward

performing measurements that could confirm the existence of non-Abelian anyons

in one particular system: the 5/2 fractional quantum Hall effect (FQHE). While

other experimental approaches have given results consistent with non-Abelian be-

haviour [1], and new material systems have gained traction as possible platforms for

topological quantum computation [2], unequivocal observation of this bizarre piece

of two-dimensional physics remains elusive.

1.2 Outline of the thesis

Chapter 2 will serve as a primer on quantum Hall (QH) physics, providing

some background necessary to understand the rest of the thesis. I will start by
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Chapter 1. Introduction

introducing some mathematical notation, and then proceed with an overview of

the classical Hall effect, Shubnikov-de-Haas oscillations, integer quantum Hall effect

(IQHE), fractional quantum Hall effect and finally the 5/2 FQHE.

In Chapter 3, I will discuss in detail several “bulk entropy measurement”

schemes for detection of non-Abelian states. A number of such experiments have

been proposed, and preliminary thermopower results have already been reported

in the literature. I will provide summaries of these proposals, as well as progress

toward experimental realization of them where applicable.

The next chapter, Chapter 4, introduces our instrumentation and measurement

apparatus. Low temperature physics requires specialized equipment to cool the

sample to a fraction of a degree above absolute zero and probe the sensitive quantum

states that occur under those conditions. I will primarily discuss optimization of

the low-noise measurement circuit for our particular studies, touching only briefly

on the refrigeration techniques used.

All of the experiments proposed in Chapter 3 rely on measurements of the bulk

of the two-dimensional electron gas, while in conventional transport measurements

most of the current flows at the edge of the sample. Chapter 5 introduces the

Corbino geometry, which can circumvent this problem for some types of experiments.

I will introduce general transport measurement techniques and benchmark results

for our highest quality Corbino sample. This chapter is adapted in part from our

publication “Second Landau Level Fractional Quantum Hall Effects in the Corbino

Geometry” [3].

Chapters 6 and 7 are based on our publication “Specific heat and entropy in the

second Landau level fractional quantum Hall effect” [4] and contain the central re-

sults of this thesis: direct measurements of the specific heat of the electron system in

the QH regime, including in the 5/2 fractional quantum Hall effect. Chapter 6 begins

with a literature review regarding thermalization of a two-dimensional electron gas,

before discussing numerical calculations of electron thermalization in our Corbino

device. Chapter 7 introduces a novel technique to measure the electron thermal

relaxation time constant and specific heat. This technique was used to perform the

measurements in the second Landau level, which are reported and discussed in the

same chapter. In the last part of the chapter, we compare the entropy as determined

from our measurements of specific heat to existing thermopower results, and find

remarkably good agreement at filling factors 5/2 and 7/3.

2
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Finally, Chapter 8 provides a summary and discusses the future outlook for

these types of experiments.

1.3 Notational conventions

Throughout this thesis, S is used to denote the Seebeck coefficient (thermopower),

while S is used to denote entropy. Where applicable, upper case letters will be used

to denote extrinsic quantities (e.g. heat capacity, C), and lower case letters for their

intrinsic equivalents (e.g. specific heat, c). Symbols are defined at their first usage.
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Chapter 2

Background

This chapter will provide an overview of the major concepts used in the later

chapters of this thesis. In particular, we will discuss the integer and fractional quan-

tum Hall effects, focusing on the 5/2 fractional quantum Hall effect. We will first

introduce the mathematical formalism and notation required to describe resistivity

(and conductivity) of 2D materials with both longitudinal and transverse compo-

nents. We will then discuss the effects of a magnetic field on a 2D system with

increasing “quantumness” - i.e. lower temperature and disorder. These effects are

the Hall effect, Shubnikov-de Haas (SdH) oscillations, the integer quantum Hall ef-

fect (IQHE) and the fractional quantum Hall effect (FQHE). Finally, we will discuss

the peculiar physics of the second Landau level (SLL), including the 5/2 FQHE, and

briefly summarize the experimental status of the field of 5/2 FQH physics.

2.1 Two-dimensional resistivity and conductivity

as tensors

For a two-dimensional sample, the usual scalar relations between the electric

field ~E and current density ~j are

~E = ρ~j, (2.1)

and

~j = σ ~E, (2.2)

where ρ is the resistivity (sometimes called sheet resistance), σ is the conductivity

(sheet conductance), and ρ = 1/σ. In some situations, such as under the influence

of an external magnetic field, ~E and ~j may not be parallel, and we must instead use
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the tensor relations

~E = ρ̂~j, (2.3)

with

ρ̂ =

(
ρxx ρxy

−ρxy ρyy

)
, (2.4)

and

~j = σ̂ ~E (2.5)

with

σ̂ =

(
σxx σxy

−σxy σyy

)
. (2.6)

The components ρxx and ρyy provide the longitudinal resistivity along the x- and

y-directions, and are equal if the resistivity is isotropic. The off-diagonal resistivity,

ρxy is also known as the Hall resistivity. In transport experiments, what is actually

measured is either the macroscopic resistance (R), or conductance (G), rather than

their microscopic counterparts. Using the geometry of Figure 2.1, the Hall resistance

and Hall resistivity are exactly equal with no geometric factors as follows:

ρxy =
Ey
jx

=
Vy/w

ix/w
=
Vy
Ix

= Rxy. (2.7)

A similar equality also holds for σxy and Gxy. Incidentally, this mathematical quirk

helps to make the integer quantum Hall effect (which will be discussed later) a

practical resistance standard by reducing the need for extremely precise sample

geometries. A measurement of the Hall resistance is a direct measurement of the

Hall resistivity, hinting at how the Hall effect links experimental observables to deep

underlying physics.

By substituting equation 2.5 into equation 2.3, we can obtain the relations

between the resistivity and conductivity components for isotropic conductivity as

follows:

σxx =
ρxx

ρ2
xx + ρ2

xy

, ρxx =
σxx

σ2
xx + σ2

xy

(2.8)

σxy =
−ρxy

ρ2
xx + ρ2

xy

, ρxy =
−σxy

σ2
xx + σ2

xy

. (2.9)
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Figure 2.1: Geometry of a 2D conductor in a perpendicular magnetic field.

In high magnetic field conditions, ρxy � ρxx, equation 2.8 simplifies to

σxx =
ρxx
ρ2
xy

, (2.10)

which is surprising, since it means that the resistivity and conductivity of the sample

are actually proportional to each other. Later, we will see the extreme case of this:

an insulating state that shows zero resistance. This is just the first of many intriguing

results in Hall effect physics, and it comes simply from considering conductivity and

resistivity as tensors.

2.2 The Hall effect

The classical Hall effect describes the behaviour of a conductor in a magnetic

field. For example, consider a thin rectangular metal film in the x-y plane, with a

magnetic field applied in the z-direction. Just as in the zero-field case, if a current

is applied in the x-direction, a voltage drop may be measured along the x-direction

according to Ohm’s law: Vx = IxRxx. However, if we measure along the y-direction,

there is also a transverse voltage Vy. The origin of this voltage is the Lorentz force

acting on the charge carriers according to

~F = q~vd × ~Bz, (2.11)
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where q is the carrier charge, vd is the drift velocity and Bz is the magnetic field

perpendicular to the sample. As illustrated in Figure 2.2, charge carriers build up

on one side of the sample, such that the force due to their electric field (F = qEy)

balances the Lorentz force. The resulting Hall resistance, after using the relation

jx = nqvd, where n is the carrier density, is given by

RH ≡ Rxy =
Ey
jx

=
Bz

qn
. (2.12)

Interestingly, the sign of RH depends on the charge of the carriers, and so Hall

measurements find practical use to determine the majority carrier density and type

(electrons or holes) in semiconductors. Conversely, sensors made from material with

known carrier density and type are routinely used to measure magnetic field in

industrial applications.

Figure 2.2: Illustration of the classical Hall effect. An applied current in the x
direction, i, drives charged particles (positively charged holes, in this case) through
the sample. (a) Initially, the Lorentz force deflects them towards one side of the
sample. (b) They soon build up there, creating an electric field Ey that, in steady
state, exactly balances the Lorentz force. The associated voltage, Vy, is called the
Hall voltage, and Vy/i is the Hall resistance.
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2.3 Shubnikov-de Haas Oscillations

Much of the interesting physics that emerges in condensed matter systems has

to do with their density of states (DOS), especially near the Fermi level, which is

the boundary between filled and unfilled states. At zero magnetic field, the DOS

(denoted g throughout this thesis) for a two-dimensional electron gas (2DEG) is flat

as shown in Figure 2.3a. The zero-field DOS, g0, is simply given by

g0 =
ne
Ef

=
m∗

π~2
, (2.13)

where m∗ is the band effective mass of the carriers, ne is the electron density and

Ef is the Fermi energy.

However, when a magnetic field is applied, the DOS is modulated by the forma-

tion of Landau levels (LLs). These can be roughly understood at the semiclassical

level as quantized cyclotron motion. A charged particle in a magnetic field, such as

an electron, tends to move in a circle. If its quantum mechanical coherence length is

greater than the circumference of the circle, we can also consider it as a wave, and

require that the circumference is equal to an integer number of wavelengths. We

can therefore define a magnetic length1,

lB =

√
~
eBz

, (2.14)

which is the radius of the circle for which an electron with momentum ~k completes

exactly one wavelength, λ = 2π/k during the orbit. The corresponding cyclotron

energy Ec and frequency ωc are

Ec = ~ωc =
~eBz

m∗
, (2.15)

where m∗ is the electron’s cyclotron effective mass. In the absence of disorder, the

DOS would be a comb of Dirac delta functions, spaced apart by ~ωc. Indeed, the

complete solution of the 2D Schrödinger equation in a magnetic field yields the

following DOS,

g(ε) =
g0

~ωc

∞∑

n=1

δ(ε− εn), (2.16)

1lB should not be confused with the cyclotron radius for electrons at the Fermi surface, Rc ≡
~kf/qB. The condition Rc = lB occurs when the first Landau level is perfectly filled.
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Figure 2.3: Density of states (blue line) and fermi function (red line) with filled states
shaded in light blue a) DOS at B = 0. b) DOS with well-separated Landau levels.
c) DOS with broad Landau levels, which overlap leading to sinusoidal modulation
of DOS.

where εn = (n + 1/2)~ωc [5]. The number of available states in each Landau level

is given by nB = g0~ωc = eB/h, i.e. the area under each peak is normalized by

the spacing of the peaks. However, disorder in real samples broadens the peaks,

yielding a DOS like the one shown in Figure 2.3b. The width of this broadening
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function is conventionally denoted Γ. Whether the broadening function is Gaussian,

Lorentzian, semi-elliptical, semi-parabolic or something else has been an issue of

extensive discussion in the literature (see, for example, [6] and references therein).

However, at low magnetic field, for ~ωc � Γ, all choices lead to a DOS of the form

g(ε) = g0 + ∆g sin

(
2πε

~ωc

)
, (2.17)

as depicted in Figure 2.3c. Since the physics of electronic systems depends on

the density of states within roughly kBT of the Fermi level, many properties of

the 2DEG vary sinusoidally as either the magnetic field or Fermi level is tuned.

These oscillations are generally known as the de Haas-van Alphen effect, and for

conductivity the SdH effect. In Chapter 5, we will discuss SdH oscillations in more

detail when we use them to characterize the mobility and quantum lifetime of carriers

in our devices.

2.4 Integer quantum Hall effect

As the magnetic field is increased, the broadened Landau Levels eventually

become well-separated when ~ωc > Γ, as shown in Figure 2.3b. If the Fermi level

lies between two Landau levels, the conductivity approaches zero. Correspondingly,

the resistivity also vanishes as a consequence of the tensor relation (Equation 2.8).

As von Klitzing et al. discovered in 1980 [7] plateaus also emerge in RH , which are

perfectly quantized in units of the quantum of conductance (Figure 2.4).

To help describe what is happening, we can introduce the concept of a filling

factor, ν, which is simply the number of Landau levels that the electrons fill. For

example, in Figure 2.3, three Landau levels are full and the fourth one is one quarter

full, so ν = 3.25.2 More formally, we have the filling factor

ν =
ne
nB

=
neh

eB
, (2.18)

2Note that the nomenclature becomes somewhat complicated due to spin splitting: ν = 3.25 is
considered to be in the second Landau level, since the first Landau level includes the spin up and
spin down branches in the range 0 < ν < 2. Furthermore, ν = 3.25 is also in the upper spin branch
of the N = 1 Landau level, where N is the filling factor neglecting spin splitting and counting from
zero.
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Figure 2.4: Discovery of the quantum Hall effect by Klaus von Klitzing in a MOSFET
device. The longitudinal resistivity (blue) shows deep minima, while the transverse
resistivity (red) shows quantized plateaus at the same field values. Note the x-axis
is electron density, controlled using an electrostatic gate, rather than magnetic field.
Data from reference [7], enhanced and colourized figure reproduced with permission
from reference [8].

and correspondingly the magnetic field for a particular filling factor,

Bν =
ne
nB

=
neh

eν
. (2.19)

The hallmark signature of the IQHE is the combination

ρxx = 0 (2.20)

and

ρxy =
h

ie2
(2.21)

for i − ε < ν < i + ε, where i is an integer and ε is the half-width of the plateau.

Although it is quite straightforward to see that σxx vanishes due to the lack of

conducting states when the Fermi energy sits between two Landau levels, it is less

obvious why ρxx should also vanish. The question is: where does the current flow
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with zero resistance in a sample with no conductance? The answer is that it flows

around the edge of the sample. This can most readily be understood in the “band-

bending” picture, shown in Figure 2.5. The Landau levels form extended states in

the bulk, but at the edges of the sample they bend upwards. Where each one crosses

the Fermi level, it forms a one-dimensional conducting edge channel. Because that

channel is in principle dissipationless, the voltage drop along its length is zero and

as such Rxx = 0. However, the conductance of each one-dimensional channel is

given by the quantum of conductance, e2/h, so the total two-point conductance of i

edge channels is ie2/h. Due to the magnetic field, these edge states are also chiral:

they flow only in one direction. In the Hall geometry, the potential at each voltage

contact is the same as the potential at the current contact upstream from it (since

there is no voltage drop along the dissipationless edge channel), so the measurement

yields the two-point measurement result: Rh = h/ie2.

Figure 2.5: Cross section showing band bending at the sample edges in the IQHE.
Landau levels are indicated by the solid lines, bending upwards at the edges. States
below Ef (dashed line) are filled (indicated by filled circles). Where the bands cross
the Fermi level, the unfilled states (empty circles) form one-dimensional chiral edge
channels going into or out of the page. Figure reproduced with permission from
reference [8].

2.5 Odd integer quantum Hall effect

The Landau levels responsible for the IQHE may be further split due to the

electron spin. In the most naive picture, the energy of spin-up and spin-down

electrons in a magnetic field differs by the Zeeman energy, Ez. The Zeeman energy
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is given by

Ez = µBgBz, (2.22)

where µB is the Bohr magneton and the known value of g in GaAs is -0.44. The

resulting value of Ez, ∼0.3 K/T, is much smaller than the experimentally observed

odd IQH gaps, which are around 6 K/T [6]. In fact, the odd IQHE cannot be un-

derstood from a single particle picture; rather, it is necessary to consider exchange-

enhancement of the g-factor in order to explain the observed gaps [9]. Piot et al.

have developed a theory for the onset of spin-splitting as a magnetic-field-induced

Stoner transition [6]. Such an explanation is consistent with our results presented in

Chapter 5, where we observe the onset of spin splitting at extremely low magnetic

fields and odd-integer resistivity minima of width similar to the even-integer min-

ima. This would be impossible to understand in the simple non-interacting Zeeman

picture.

2.6 Fractional quantum Hall effect

In samples with very low disorder, additional quantum Hall plateaus emerge

at fractional filling factors, with fractionally quantized Hall resistivity. In order to

understand this phenomenon, it is necessary to consider the many-body physics of

interacting electrons. One way to understand the particular fractions that occur is

through the composite fermion (CF) picture. We begin by quantizing the magnetic

flux into fluxons carrying magnetic flux of Φ = h/e. The number of fluxons per

unit area is then nΦ = B/Φ, which means that we can rewrite the filling factor

as simply ν = ne/nΦ. The IQH condition occurs when the number of electrons is

an integer multiple of the number of flux quanta. Now we consider the possibility

that an electron can pair with two flux quanta to form a new quasiparticle called

a composite fermion (CF). A 2D CF gas is also subject to the IQHE, however

the effective field it experiences is reduced by the number of flux quanta used up

by forming CFs. The remaining flux density n∗Φ is equal to nΦ − 2ne, because two

flux quanta per electron are used to create the composite fermions. Additionally, the

density of composite fermions nCF is identical to the density of electrons. Therefore,

the effective filling factor for the CFs is

ν∗ =
nCF
n∗Φ

=
ne

nΦ − 2ne
, (2.23)
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Figure 2.6: Top panel: Magnetoresistance data for a 2DEG, with IQH minima
indicated. Bottom panel: FQH minima in the same sample at higher magnetic field.
The correspondence between the minima (dashed red lines) are a demonstration of
how the FQH minima can be interpreted as IQH minima, but for composite fermions
rather than electrons. Figure reproduced with permission from [8] based on data
from [10].

or, by dividing through by nΦ,

ν∗ =
ν

1− 2ν
, (2.24)

which means that ν∗ will take on integer values when the electron filling factor is

ν =
p

1 + 2p
, (2.25)

for p = 1, 2, 3... This explains the filling factors of the most prominant FQH

series (1/3, 2/5, 3/7...). Similar constructions using holes instead of electrons, or

4-flux CFs explain most other fractional states. In all cases, Equation 2.25 and its

generalizations only allow for the IQHE of CFs to occur for odd-denominator values

of ν.
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2.7 5/2 fractional quantum Hall effect

In 1987, an even-denominator FQH plateau was observed for the first time, at

filling factor 5/2 [11]. This surprising experimental discovery led to a flurry of theo-

retical proposals, since it does not fit the standard odd-denominator CF series. The

most interesting explanation for the ν = 5/2 state is the Moore-Read (MR) Pfaffian

wavefunction [12]. In a hand-waving way, it can be understood by considering the

same 2-flux CFs invoked in the previous section. Since 5/2 is really 2 + 1/2, the

spin-up and spin-down branches of the lowest Landau level (LLL) are both filled.

The second Landau level (SLL) is half-filled, yielding a ratio of nCF to nΦ of 1/2.

Therefore, if the CFs form with two fluxons per electron, every fluxon is attached to

an electron, leaving zero residual magnetic field. Indeed, in the half-filled LLL, the

2DEG acts much like a Fermi liquid of CF’s at zero field. The Moore-Read state is

formed by CFs Cooper-pairing to form a “superconducting-like” state, accounting

for the observed vanishing ρxx. This state is particularly interesting because the

pairing is exotic: unlike in usual s-wave superconductors, the pairing is p-wave. As

a result, the MR state supports non-Abelian (NA) excitations. Experimental veri-

fication of non-Abelian physics would be a major scientific breakthrough, however

there are alternative explanations for the ν = 5/2 and the experimental picture is

still murky despite some promising results (see Section 2.8).

Besides the MR Pfaffian state, a number of other theories have been proposed

to explain the ν = 5/2 FQHE. One of the first proposed was the Haldane-Rezayi

state [13], an Abelian spin-unpolarized state that corresponds to d-wave pairing [14].

Another unpolarized Abelian state is the two-component 331 state [15]. Finally,

there is the non-Abelian particle-hole conjugate to the Moore-Read Pfaffian, known

as the anti-Pfaffian state [16, 17]. Experimental studies of the ν = 5/2 FQHE gen-

erally fall into one of two categories: either one tries to compare measured physical

properties (such as spin polarization) to the predictions of specific theories, or one

tries to observe non-Abelian behaviour directly.

2.7.1 Non-Abelian Anyons

A central concept in many-body physics is the idea of quantum statistics. A

group of quantum particles may be described by a collective wavefunction, Ψ. If

the particles are well-separated, one may ask what would happen to Ψ if two of
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the particles swapped places. In three dimensions, there are only two possibilities

according to the spin-statistics theorem. For bosons, Ψ is unchanged by particle

exchange, while for fermions, it changes to −Ψ. In two dimensions, the topological

restriction that allows only Bosons and Fermions is lifted, and other statistics are

possible. In particular, Abelian anyons can change phase by a fraction of π. Laughlin

quasiparticles, such as the e/3 quasiparticles at ν = 1/3 behave as Abelian anyons

[18]. Non-abelian anyons are even more bizarre. Upon exchange of particles, their

wavefunction is transformed by a unitary operator. They are called non-Abelian

anyons since the operation acts as a matrix multiplication, so multiple exchange

operations do not commute. A sequence of such operations, when considering the

world lines of the quasiparticles in two spatial dimensions plus time, can be described

mathematically by the braid group. It has been shown that some non-Abelian

systems can be used to create a universal quantum computer, with quantum logic

gates implemented by specific braiding operations. This is particularly intriguing,

since the operations are “topologically protected,” and computation based on them

should be highly fault-tolerant [19]. The MR Pfaffian state proposed at ν = 5/2

cannot be used to implement a full set of quantum gates, but other quantum Hall

states such as ν = 12/5 may [20].

2.7.2 Quasiparticles at ν = 5/2

The low-energy excitations of the Moore-Read state, which contain at their

centres the localized non-Abelian anyons, are vortex-like quasiparticles. That is, in

the superconductor analogy, the quasiparticles are similar to the vortices that form

in a superconductor exposed to a magnetic field smaller than the critical magnetic

field. A way to understand this is to think of the 5/2 QH condensate trying to

“reject” any deviation in magnetic field away from perfect 5/2 filling. Each flux

line that gets introduced gets localized to a small region that pushes away the QH

condensate. The charge of the quasiparticle is given by the integral of missing charge

density in the vicinity of the quasiparticle, and in the case of the non-Abelian anyons

in the Moore-Read state is found to be e/4. Therefore, to introduce quasiparticles

to ν = 5/2, one can simply shift the filling factor slightly by either detuning the

magnetic field or changing the electron density using an electrostatic gate.
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2.8 Experimental status of ν = 5/2

2.8.1 Quasiparticle charge

One prediction of both the Pfaffian and anti-Pfaffian models is that the non-

Abelian quasiparticles have charge e/4. The first observation of quasiparticles with

charge e/4 at ν = 5/2 were carried out using shot-noise measurements [21]. Since

shot-noise is simply the statistical result of current being transmitted stochastically

in discrete units, the charge of the carriers appears directly in the formula for its

noise spectral density. Additional evidence for charge e/4 quasiparticles comes from

studies of quasiparticle tunnelling [22] and local compressibility [23].

2.8.2 Spin-polarization

Another property of quantum Hall states that varies from one state to another

is their spin polarization. The first integer quantum Hall state, at ν = 1 is fully

spin-polarized, since it occurs when only the lower-energy spin branch of the LLL is

full. Conversely, the state at ν = 2 is fully unpolarized, since both the up and down

spin branches are full. This even-odd pattern holds for the IQHE, but the picture for

the FQHE is more complex. At ν = 5/2, both spin-polarized and spin-unpolarized

wavefunctions have been proposed. A clear experimental determination of the ac-

tual spin-polarization would eliminate certain theoretical descriptions as possibili-

ties. Several attempts have been made to find evidence for the spin polarization

by observing the behaviour of the 5/2 energy gap versus magnetic field [24–26]. Of

particular interest is the effect of a parallel magnetic field, which tunes the Zeeman

energy without affecting the cyclotron energy. However, interpretation of the ex-

perimental results is complicated by effects of the finite width of the quantum well,

which is comparable to the magnetic length [27].

More recently, multiple groups have performed experiments to measure the spin

polarization directly. The most successful technique has been an innovative version

of resistively detected NMR in conjunction with fast electrostatic gating [28,29]. In

these studies, the sample is first tuned to a particular filling factor (such as 5/2),

and continuous wave RF is applied at a frequency close to the nuclear resonance.

Then, a voltage is applied to the gate to bring the sample to another filling factor

(such as 2/3), where its resistance is highly sensitive to the nuclear spin. If the RF

that was applied while at 5/2 was on resonance, the nuclei will have been partially
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depolarized and the resistance at the detection state will be different. By repeating

this procedure, it is possible to determine the resonant frequency of the nuclei while

the electrons are in the 5/2 state. That frequency is proportional to the spin flip

energy for the nuclear spin, which will be enhanced if the electrons are spin-polarized

and create an additional effective magnetic field. The change in resonance frequency

due to spin polarization of the electrons is known as the Knight shift. The results of

this experiment, performed independently by two different groups, suggest a fully

spin-polarized 5/2 state. This is consistent with the prediction of the Moore-Read

Pfaffian, and eliminates the 331 state as a possibility.

2.8.3 Tunnelling

Theory predicts that non-Abelian and Abelian states can be distinguished based

on the tunnelling rates for quasiparticles through a quantum point contact. Two

groups have reported experimental results for this type of study [22, 30], with the

most recent results suggesting competition between an Abelian and non-Abelian

state, depending on the degree of confinement, with the non-Abelian state being

favoured at weak confinement (and, one would therefore assume, in the bulk).

2.8.4 Neutral edge modes

Some of the most challenging and intriguing experiments used to study the 5/2

FQHE involve the detection of neutral edge modes. In both the IQHE and FQHE,

charge is transported by chiral edge states. Current can only flow in one direction,

either clockwise or counterclockwise, depending on the sign of the carrier charge

and the direction of the field. However, theory predicts that there could also be

neutral edge modes, which can transport heat but not charge. For example, one

can imagine an electron and a hole forming a neutral exciton. Such modes could

travel “upstream” - i.e. in the opposite direction from charge transport, since they

are not affected by the magnetic field. Whether such modes exist or not depends on

the wavefunction underlying the particular quantum Hall state, and thus detection

(or convincing non-detection) could be used to narrow down the list of candidate

wavefunctions for the 5/2 state.

Researchers at the Weizmann Institute have successfully detected neutral edge

modes in integer and fractional filling factors, including ν = 5/2 [31]. To do so, they

measured shot noise at a particular contact on the sample, while driving current at
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different contacts. They observed an increase in shot noise at the probe contact,

even though no current reached it. This was interpreted as evidence for the flow of

heat without charge transport.

2.8.5 Interferometry

Figure 2.7: a) Fabry-Pérot interferometer for electrons or quasiparticles. The dark
grey regions represent electrostatic gates, defining a central region and two quantum
point contacts. Changing the side-gate voltage, Vs, changes the area, and therefore
the number of QPs (represented green dots) enclosed. b) Simplified cartoon the
expected results for such an experiment. Figure based on reference [32].

Perhaps the most direct evidence for non-Abelian anyons would be observation

of actual braiding operations. One way to do that is by using an electron (or quasi-

particle, in this case) interferometer, analogous to familiar optical interferometers.

A cartoon of such a device is shown in Figure 2.7a, where the particles following

the red path and the blue path interfere constructively or destructively. Particles

traveling around the edge braid around localized particles in the central area, and it

has been shown that the periodicity of the resulting interference pattern depends on

whether they wind around an odd or even number of non-Abelian anyons [33, 34].

As the side gate voltage is changed, changing the parity of the number of enclosed

quasiparticles, one would expect a signal similar to the one shown in Figure 2.7b,

with distinct changes in the periodicity of the interference pattern. The experiments

by Willett et al. [1, 35, 36] have shown promising results, and work in this area is

still ongoing.
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2.9 Summary

The two-dimensional electron gas in a magnetic field is a rich platform for

studying condensed matter physics as it plays host to a hierarchy of increasingly

“quantum” phenomena as new highs in sample mobility and lows in temperature are

reached. One of the most recent frontiers is the even-denominator ν = 5/2 QH state,

which may host non-Abelian anyons that break the fermion/boson dichotomy. The

next chapter will introduce measurement techniques that could detect the additional

ground state entropy expected in a non-Abelian state. These experiments were

originally proposed as a way to avoid the damaging fabrication steps required to

build interferometers, as well as reduce complications due to quantum Hall edge

physics.
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Entropy detection in the fractional

Quantum Hall Regime

One of the holy grails of condensed matter physics is unambiguous detection of

non-Abelian (NA) quantum statistics. Ideally, this would involve actually perform-

ing braiding operations with the quasiparticles and observing the resulting change

in their quantum state. At ν = 5/2, this would mean constructing an interfer-

ometer and observing changes in the Aharanov-Bohm periodicity as the number of

quasiparticles in the bulk changes between even and odd [37]. Several groups have

attempted such studies. While the results by Willett et al. [1] provide evidence for

such states, independent verification is still lacking. Due to the difficulty of per-

forming actual quasiparticle braiding operations in the 5/2 state, measurement of

the bulk entropy has been proposed as an alternative and complementary experi-

mental direction. The entropy may be determined by measuring the thermopower,

adiabatic cooling, magnetization, heat capacity and other related quantities. This

chapter will provide an overview of these experimental proposals, as well as highlight

some of their advantages and limitations.

3.1 Expected non-Abelian entropy of the 5/2 state

In a non-Abelian system, there must be a set of degenerate ground states which

are accessible only via braiding operations. The number of such states (or degener-

acy, D) is exponential in the number of quasiparticles, according to

D = dNqp , (3.1)
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where d is the so-called quantum dimension and Nqp is the number of non-Abelian

quasiparticles. For the Moore-Read state, d =
√

2 since the quasiparticles are Ising

anyons [12]. Correspondingly, the quasiparticles (if localized) must also have a non-

Abelian entropy,

SD = kB logD = kBNqp log d, (3.2)

which is proportional to the number of quasiparticles. In 2009, two different groups

proposed experimental schemes that would use the entropy as a signature of an

FQH state being non-Abelian [38, 39]. Such experiments would avoid the practi-

cal difficulties of fabricating interferometers, as well as the theoretical challenges of

understanding the detailed physics of the quantum Hall edge. However, entropy

measurements are also non-trivial, especially since the total entropy of the quasi-

particles also has a substantial (and, in many regimes, dominant) contribution from

other sources. In general, we may break up the total entropy, Stotal, according to

Stotal = SD + Sn, (3.3)

where Sn is the normal entropy due to usual excitations of the system. In the next

few sections, we will give an overview of various experimental schemes to probe the

entropy.

3.2 Thermopower

In metals and semiconductors, the fact that charge carriers also transport heat

causes thermal currents, electrical currents, thermal gradients and potential gradi-

ents to become interrelated. Thus, resulting thermoelectric effects can be used in

various configurations. For example, in the Peltier effect an electrical current drives

a heat current, cooling one of the terminals of the device. In reverse, a heat current

can drive an electric current, which can be used for thermoelectric power gener-

ation. In this section, we will consider the voltage that arises in an open circuit

due to a thermal gradient. This is known as the Seebeck effect, or often simply the

thermopower.

The Seebeck coefficient is defined as

Sij =
qEi
∇jT

(3.4)
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where q is the charge of the carriers, E is the electric field and the i and j subscripts

refer to the orientations of the electric field and temperature gradient (x and y in

Cartesian coordinates, or r and φ in polar coordinates). Note that the transverse

Seebeck effect in a magnetic field is sometimes called the Nernst effect, with the

Nernst coefficient defined as N = Sxy/Bz. Equation 3.4 can also be rewritten as

Sij = −∆Vi
∆Tj

, (3.5)

which relates the voltage measured between two points to the temperature differen-

tial across the sample.

Figure 3.1: a) Seebeck effect in a rectangular 2DEG. A temperature gradient, main-
tained by an external heater, exerts an entropic force on the quasiparticles (indicated
by the zig-zag path): a QP with high kinetic energy from the hot side loses energy
when it arrives at a colder part of the sample, and does not have the energy to
return all the way to where it started. The net effect is a weighted random walk,
tending to move particles to the cold side). They soon build up on the cold side of
the sample, setting up an electric field. However, the quantum Hall edge provides an
alternative return path “shorting out” the thermopower. b) A radial temperature
gradient in a Corbino device causes a radial electric field to develop. However, there
is no QH edge, so a larger charge build-up and electric field can be maintained than
in the rectangular device.

In a 2DEG, there are two major contributions to Sij: diffusion and phonon drag.

In this section, we will focus on diffusion thermopower, which is dominant in the

low temperature limit below a few hundred milliKelvin [40]. A cartoon of diffusion

thermopower is shown in Figure 3.1a and discussed in its caption. Under certain

conditions, the thermopower of a 2DEG is approximately equal to the entropy per
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quasiparticle. Cooper et al. [41] showed that this relation holds for longitudinal

thermopower in the quantum Hall regime in the clean limit,

Sxx =
−S
eNe

, (3.6)

while Yang and Halperin [39] later proposed its use for detection of non-Abelian

anyons via their excess entropy. In the Corbino geometry, shown in Figure 3.1b, the

radial thermopower is instead equal to the entropy per quasiparticle,

Srr =
−S
qNqp

, (3.7)

as shown by Barlas and Yang [42]. Since the number of quasiparticles is generally

much smaller than the number of electrons, the thermopower is expected to be much

larger in the Corbino geometry.

Chickering et al. have carried out thermopower measurements at ν = 5/2 and

ν = 7/3 at temperatures as low as 20 mK, but were not able to draw firm conclusions

as to the existence or non-existence of a non-Abelian entropy contribution [40, 43].

Doing so may require the study to be carried out at even lower temperatures, in

order to reduce the contribution of Sn. In Appendix E, I present results of my

experimental investigations into measuring thermopower driven by in situ Joule

heating in the Corbino geometry.

3.3 Detection via Maxwell relations

The Maxwell relations are a set of equations that relate various thermodynamic

derivatives. They are derived by considering the mixed partial derivatives of ther-

modynamic potentials, such as the Gibbs free energy. Since the non-Abelian entropy

is proportional to Nqp, it would be observable by measuring (∂S/∂N)T . Cooper and

Stern [38] noticed that two of the Maxwell relations are of particular interest for

this task: (
∂µ

∂T

)

N

= −
(
∂S
∂N

)

T

(3.8)

and (
∂M

∂T

)

B

= −
(
∂S
∂B

)

T

, (3.9)
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where M is the orbital magnetization. The latter equation is useful due to the

flux-like nature of FQH quasiparticles, which creates a direct relationship between

∆B and Nqp. An experiment based on equation 3.8 would involve measuring the

change in chemical potential of the 2DEG, at constant electron density, while the

temperature is changed by a small amount. Equivalently, one could measure the

change in electron density at constant chemical potential by using a top gate near the

2DEG as a capacitive charge sensor. One would then use the geometric capacitance

to calculate the equivalent change in µ, or, ideally, use a feedback loop to tune

the gate voltage and maintain constant electron density in the 2DEG. The required

gate voltage would then equal the change in µ due to the applied ∆T . The simpler

version of the experiment has been performed in the few Kelvin temperature regime

by Kuntsevich et al. [44], however substantial effort would be required to adapt it to

. 100 mK temperatures due to diverging thermal timescales [43–45]. A serpentine

heater deposited on the sample may allow fast enough temperature modulation, but

it is still likely to create unwanted thermal gradients within the 2DEG. My initial

investigation into a version of the experiment using non-resonant RF heating to

quickly modulate the 2DEG temperature is presented in Appendix E.

Similarly, an experiment based on Equation 3.9 would require sensitive measure-

ment of the 2DEG’s magnetization as a function of temperature, using a technique

such as torque magnetometry. To my knowledge, such an experiment has not been

reported in the literature.

3.4 Adiabatic Cooling

Another approach to the entropy, first proposed by Gervais and Yang [46],

is to consider the effect of adiabatically adding ∆N quasiparticles to a thermally

isolated 2DEG. The question is: how would the temperature of the system change

in response? If the process is adiabatic in the classical sense (no heat added) and

reversible, we must have ∆S = 0. Therefore, the equation

∆S = 0 =
∂S
∂N

∆N +
∂S
∂T

∆T (3.10)

must be satisfied. Rearranging, and using the relation C = T ∂S
∂T

, we obtain

∆T

∆N
= −T

C

∂S
∂N

(3.11)
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Since C is always positive, ∆T
∆N

immediately provides a probe of the sign of ∂S
∂N

,

even if C itself is unknown. In principle, this experiment could be carried out by

using either a change in magnetic field or a gate to add and remove quasiparticles.

In conjunction with a specific heat measurement, it would provide full information

about the dependence of S on N .

In practice, the difficulty with adiabatic cooling is that it requires thermal

isolation of the 2DEG, which means the experiment has to be performed faster

than the thermal relaxation timescale. However, changing the quasiparticle number

quickly also generates heat within the 2DEG, breaking the adiabaticity requirement.

An estimate of the expected achievable temperature change due to the non-Abelian

part of the entropy is presented in Appendix D.

3.5 Specific heat

Perhaps the best-known experimental proxy for the entropy is the specific heat,

which is the amount of energy required to heat a unit of material by a unit of

temperature. However, specific heat is far from ideal as a means to detect SD,

since it probes the temperature derivative of S, while SD is a priori temperature

independent. Nonetheless, it may be possible to detect SD via specific heat in a few

different ways.

3.5.1 Degeneracy breaking at low temperature

In principle, the non-Abelian ground states are not “true” ground states, their

degeneracy being lifted at low enough temperature by terms that are exponential

in the separation of their quasiparticles [47]. At low enough temperatures, the

degeneracy is expected to break, as illustrated by the red curve in Figure 3.2. The

temperature scale where this occurs is Td ≈ ∆e−l/l0 , where ∆ is the energy gap of the

FQH state, l is the spacing between quasiparticles and l0 is the characteristic size of

the quasiparticles [39]. There is also some evidence from numerical calculations that

the 5/2 quasiparticles are very large, with l0 ' 150 nm [48], which may lead to Td

being reached within an experimentally accessible temperature range. For example,

with ∆ = 500 mK, ne = 3 × 1011 cm−2 and B detuned from ν = 5/2 by 5 mT, we

would have Td = 67 mK (assuming the 150 nm size estimate). The breakdown of

the non-Abelian degeneracy could provide the temperature dependence necessary
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Figure 3.2: Sketch of the expected entropy vs temperature in a non-Abelian quantum
system. At the lowest temperature, the NA states are not degenerate, and there
is only normal entropy. At some characteristic degeneracy temperature, Td, the
states become degenerate and begin to act as a manifold of non-Abelian ground
states, contributing entropy SD to Stotal. Above the melting temperature, Tm, the
system undergoes a series of crossovers and/or transitions, such as perhaps Wigner
crystal melting, breakup of the paired MR state and formation of a Fermi liquid of
composite fermions. In the Fermi liquid state, the entropy is, in principle, linear
and extrapolates to zero (dotted line).

for the non-Abelian entropy to influence the specific heat.

3.5.2 Integration to known high temperature behaviour

The entropy of the system can be found from specific heat, up to a constant of

integration, using the equation

S(T ) = S(T0) +

∫ T

T0

C

T ′
dT ′, (3.12)

where C is the system’s heat capacity (the extrinsic version of specific heat). If one

could determine S at one temperature T0, one could use measurements of C(T ) to

find S at other temperatures. For example, one could measure thermopower at high

temperature, and C over a range of T that includes much lower temperatures with

different physics. Alternatively, one could use more theoretical arguments. The
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third law of thermodynamics says that S = 0 at T = 0. In practice, T0 could be

chosen such that S(T0)� S(T ) and the error introduced into the determination of

S(T ) is negligible. Finally, it may be possible to find S in absolute units at high

temperature, when the CF’s form a Fermi liquid. The entropy of a Fermi liquid is

known to be linear with an intercept of zero, as illustrated in Figure 3.2. Linear

behaviour over a wide range of T could therefore be used to determine S. This

latter approach has been successfully used in studies of superfluid Helium-3 [49].

3.6 Summary

By measuring the entropy vs number of quasiparticles in a fractional quantum

Hall state, it is, in principle, possible to determine whether it is non-Abelian. This

chapter has discussed a number of experimental techniques to access the entropy.

However, all of these measurements must probe the bulk quasiparticles to be suc-

cessful, whereas usual transport techniques tend to be dominated by edge physics.

Chapter 5 will introduce the Corbino sample geometry, which will help to mitigate

this problem and improve the sensitivity of experimental measurements. First, how-

ever, we will take a look at the measurement apparatus and instrumentation in the

next chapter.
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Instrumentation and Methods

Observation of subtle quantum phenomena close to absolute zero requires both

an ultra-low temperature refrigerator and an array of sensitive measurement equip-

ment and techniques. In this chapter, I will introduce the physical apparatus used

to perform the measurements presented in the rest of the thesis.

4.1 Refrigeration

4.1.1 Dilution Refrigerator

Our samples are cooled using the workhorse of low-temperature physics: the

dilution refrigerator. In order to reach temperatures as low as 17 mK, several cool-

ing stages are employed, as shown in Figure 4.1. Our system is a so-called wet

refrigerator, meaning that the cooling stages are located within a vacuum can that

is immersed in liquid helium to reach 4.2 K. The topmost stage of the cryostat,

called the 1 K pot, is cooled by evaporative cooling of 4He. A small pipe connects

the 1 K pot to the helium bath, and an external vacuum pump pulls the helium

out. Since higher energy atoms preferentially leave the liquid, the remaining atoms

have a lower average kinetic energy and temperature (typically around 1.5 K during

normal operation).

Below the 1 K pot, the remaining stages comprise the dilution unit itself. The

still is cooled by evaporative cooling of 3He, which has a much lower boiling point

than 4He and reaches a few hundred mK. The source of 3He is actually the lowest

stage of the refrigerator: the mixing chamber. In the mixing chamber, both 3He

and 4He coexist, but phase-separate due to their quantum mechanical properties

and distinct quantum statistics. By pulling 3He from the 3He rich phase to the
3He poor phase, further cooling is achieved. The system operates in a closed loop,
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Figure 4.1: Schematic diagram of a dilution unit showing the multiple cooling
stages and their respective temperatures. Figure reproduced with permission from
reference [8].

whereby 3He is pumped out of the still, pressurized, and returned to the mixing

chamber via an impedance (to ensure a slow return rate) and a series of pre-cooling

heat exchangers. A more detailed description of the refrigerator is available in Cory

Dean’s PhD thesis [8].

4.2 Cooling Electrons

4.2.1 General considerations

While the dilution refrigerator itself is a commercially available and well-established

piece of technology, bringing the electrons within the sample to the same temper-

ature as the mixing chamber presents a notoriously difficult challenge. To perform
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electrical measurements, there must be wires passing from the sample at base tem-

perature, through each stage of the refrigerator, and ultimately to the instrumenta-

tion at room temperature. Special precautions must therefore be taken to prevent

heating the electrons by thermal conduction or Joule heating. These two mecha-

nisms are discussed below.

Thermal conduction

Good electrical conductors are usually also good thermal conductors at low

temperature, where electrons are more important than phonons in thermal trans-

port. To avoid conducting heat to the sample, we can use superconducting wires,

in which electrons do not carry heat. Alternatively, we can use thin wires made of

alloy materials such as Manganin and NiChrome which have relatively low thermal

conductivity and low, but sufficient, electrical conductivity compared to pure metals

such as copper and silver.

Joule heating

Any current flowing through the sample will generate heat in the sample accord-

ing to Joule’s law: P = I2R. This is particularly problematic if the electron-phonon

coupling is weak (as it is at low temperature), and this power cannot be efficiently

dissipated. Stray currents may arise from ground loops, capacitive and emf pickup

in the wiring, microphonics and even Johnson noise in the room temperature re-

sistors included within the measurement circuit. To mitigate this, filters may be

installed to limit any frequencies outside of the desired measurement bandwidth

from reaching the refrigerator, and the room temperature part of the circuit should

be carefully designed to prevent noise currents from arising in the first place.

4.2.2 Our wiring design

In order to satisfy the requirements of our experimental setup, different types

of wires are used at different stages of the cryostat. Between the top of the cryostat

(at room temperature) and the 1 K pot, we use Manganin wires, which have rel-

atively poor thermal conductivity but acceptable electrical conductivity. Between

the 1 K pot and the mixing chamber, we use CuNi-clad monofilament NbTi super-

conducting wires. Since a superconductor does not carry heat and CuNi is a poor
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thermal conductor, these wires reduce the heat load reaching the mixing chamber.

The wires are epoxied to copper heatsink blocks at each stage to thermally anchor

them. From the mixing chamber to the sample stage, we use silver wires. These

wires pass through a pressed silver powder filter which both provides a thermal con-

tact and filters out microwave frequencies (via dissipation of eddy currents induced

in the silver grains). Certain headers also include lowpass RC filters with a cutoff

frequency of around 1 kHz, which are suitable for low frequency measurements. In

addition to filtering, the capacitors in the RC filters also act as efficient heatsinks,

since by design a capacitor features two plates with large area separated only by a

very thin insulating layer. All wires are arranged as individually shielded twisted

pairs. However, as will be discussed later it is often impractical to use the two wires

of the pair as source and return, since capacitive coupling between them would be

problematic.

All wires and filters used in this thesis were the same as described in Cory Dean’s

PhD thesis [8], with no modification. The sample wiring diagram is reproduced in

Appendix B.

4.3 Low Noise measurement

4.3.1 Lock-in amplifier

A lock-in amplifier is a powerful tool that can be used to accurately measure

one specific frequency component of a signal. Mathematically, it can be thought

of as a one component Fourier transform of the signal. Internally, it multiplies the

signal with a reference sine wave, as shown in Figure 4.2 and integrates the result.

Unlike a true Fourier transform, however, it integrates over only a finite integration

window using a low pass filter. To detect both in-phase and out-of-phase signals,

two lock-in circuits are required: one for each phase. Many modern lock-ins include

both circuits within a single instrument for convenience. The basic lock-in equations

are:

X(t) = 2

∫ ∞

0

sin(ωref t) · vsig(t− t′)I(t′)dt′ (4.1)

Y (t) = 2

∫ ∞

0

cos(ωref t) · vsig(t− t′)I(t′)dt′, (4.2)
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where I(t′) is the normalized impulse response function of the low-pass filter, and

X and Y are the in-phase and out-of-phase voltage respectively. If the input signal

is simply vsig = v0 sin(ωref t), the resulting outputs are

X(t) = v0

∫ ∞

0

(1− cos(2ωref t)) · I(t′)dt′ (4.3)

Y (t) = v0

∫ ∞

0

(sin(2ωref t)) · I(t′)dt′. (4.4)

If the integration time (i.e. the width of I(t)) is large compared to π/ω, this reduces

to X(t) = v0 and Y (t) = 0. The output for an input at any other frequency

approaches zero for sufficiently long integration time. The lock-in is, therefore, an

extremely high-Q tuneable bandpass filter. Basically, signals at the frequency of

interest have been transformed to DC, where they are easily filtered using a simple

low pass filter. All other frequencies are transformed to other AC frequencies and

can be removed by the low pass filter.

Older analog lock-in amplifier designs use sophisticated analog electronics to

perform the calculation, while newer digital models digitize the signal, multiply by

the (digital) reference and apply digital filters to the result. In some low temperature

measurements, analog lock-ins are still used in order to avoid electrical interference

which is unavoidably emitted by digital models. Such noise could potentially reach

the sample, either heating it up or simply degrading the signal-to-noise ratio of the

measurement. In our setup, I found that removing digital instrumentation from the

Faraday cage surrounding the refrigerator did indeed lower the observed noise, as

discussed later in section 4.4.4.

Advantages

In low-temperature physics, lock-in amplifiers are often used to avoid the prob-

lems of purely DC measurement. DC measurements are typically very noisy, due to

thermoelectric voltages, diverging 1/f noise, and thermal drift in components such

as resistors (both within the instruments and in the external circuitry). By instead

using low frequency excitation and detection, we can prevent slowly varying voltages

from affecting the measurement.

Lock-in amplifiers are also an ideal tool for harmonic and heterodyne detection.

By detecting at multiples of the excitation frequency, or the sum (or difference)

33



Chapter 4. Instrumentation and Methods

Figure 4.2: Simplified schematic for a Lock-in amplifier and basic measurement.
The reference oscillator generates a sine wave voltage output, which is converted to
a current by the V/I converter and applied to the sample. The voltage across the
sample is amplified by a preamplifier before being split and multiplied by internal
sine and cosine reference signals. The output from these is low pass filtered to obtain
the X and Y components as DC voltages. In modern lock-ins, the input signal is
digitized after the preamplifier and all other parts are implemented digitally.

between multiple excitation signals, it becomes straightforward to probe nonlinear

effects with high sensitivity.

Pitfalls

Because a lock-in requires a reference signal at the frequency of interest, there

is an internal oscillator generating a sine wave at that frequency. If the instrument

or sample is improperly grounded, that signal may couple to the measurement side

of the circuit, leading to a persistent background offset in the lock-in measurement.

I observed this problem in some measurements when the SR830’s digital output

port was connected to an optoisolator. While the optoisolator serves its function of

electrically isolating the instrumentation from the computer being used to record

the data, it does also provide additional ground paths for the instruments connected

to it via the shields of their signal cables and its grounded chassis. To break the

ground loop, one can instead connect the analog X and Y outputs of the SR830 to

a DC voltmeter (such as Agilent A34401) and connect that to the optoisolator to

be read by the computer.
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4.3.2 Voltage measurement and voltage preamplifiers

An ideal voltage detector would measure the potential difference between two

points in a circuit without any current passing through the detector (i.e. it would

have infinite input impedance). For AC voltages, the main measurement tool we

use is the voltage preamplifier. Voltage preamplifiers are characterized by several

key parameters. The most obvious is the gain - the ratio of the output voltage to

the input voltage. A large gain boosts the signal above the level of the noise added

by later instrumentation stages, however, excessive gain may lead to clipping of the

signal if the output voltage becomes too large. This is especially problematic if

the desired signal is smaller than extraneous signals. In this case the signal should

only be partially amplified prior to application of filters. In the SR830, the tradeoff

between applying more gain at the internal preamplifer (for low noise) or after

the filter (for rejection of large off-frequency background signals) is adjustable by

changing the “dynamic reserve.”

The next key figure, for our purposes, is the equivalent input voltage noise,

ṽin. This is defined as the measured RMS noise at the output, divided by the gain.

Note that it might not actually be physical noise at the input itself: it can have

contributions from any component in the preamplifer circuit, including the power

supply. In general, ṽin is frequency dependent, having a 1/f dependence below

some corner frequency fc and a flat dependence above that. One also needs to pay

attention to the input impedance of the preamplifier, which must be much larger

than the sample impedance in order to approximate the “infinite input impedance”

approximation. Other important parameters are: linearity, bandwidth and flatness,

stability, and input bias voltage.

Finally, it should be noted that preamplifiers may either be single-ended (vout =

Gvin) or differential (vout = G(vin2 − vin1)). In practice, the output signal consists

of not only the amplified difference between the inputs, but also a component of the

sum of the two (the common mode voltage). This can be a problem if, for example,

both inputs pick up a voltage at 60 Hz due to power line hum. A differential

preamplifier’s ability to reject common-mode signals is specified by its common

mode rejection ratio (CMRR).
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4.3.3 Current measurement

An ideal current detector would accurately measure the current passing through

it, without any voltage drop across the detector (zero impedance). We will consider

two current measurement methods: current preamplifiers and voltage measurement

across a sense resistor.

Current preamplifiers

The gain, or transimpedance, of a current preamplifier is the ratio of its output

voltage to the input current. As in the voltage preamplifier, the purpose of a current

preamplifier is to boost the input signal to a level such that noise added by later

signal processing stages is negligible. Its noise performance may be characterized by

the equivalent input current noise, iin, which is defined similarly to vin.

One nice feature of current preamplifiers is that they actively maintain the input

at virtual ground. Thus, the sample acts like it is actually grounded, rather than at

a finite voltage equal to iZin. On the other hand, current preamplifiers tend to be

more difficult to use than their voltage counterparts. Many models, including the

SR570, have a non-negligible input bias current, meaning they constantly drive a

small current into the sample. Another issue with current preamplifiers is that their

noise performance tends to degrade badly with increasing input cable length, due

to the capacitance of the wires to ground. In fact, the state-of-the-art Femto line

of preamplifiers are not suitable for many low temperature applications, since there

are always a few meters of wiring between the sample and the preamplifier. The

SR570 made by Stanford Research Systems, which was used in measurement setup B

(see below), is relatively immune to long input wires, making it more suitable for

low-temperature measurements.

Voltage preamplifier + sense resistor

It is also possible to measure current by using a voltage preamplifier to measure

the voltage drop across a resistor. This scheme has some advantages over using a

current preamplifier, in that it avoids the problem of injecting an offset bias current

into the sample (since JFET preamplifiers have negligible bias current) and is less

affected by capacitance than most commercial current preamplifiers. The main

drawback of this scheme is that the resistor does not provide a “virtual ground.” To

have the sample truly grounded, it would be possible to place the sense resistor in
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Figure 4.3: Two different arrangements for measuring current with a sense resistor,
Rm. The sample is represented by Rs and stray capacitance of the wiring by C. In
each case, the measured current is given by i = Vsrc/Ztotal, where Ztotal is the total
impedance of the components within the dotted rectangle. a) Sense resistor between
the voltage source and the sample: C contributes to the measured impedance. b)
Sense resistor between the sample and ground, eliminating C from the measurement.

the input arm of the circuit and use a differential preamplifier to measure the voltage

drop across it as shown in Figure 4.3a. However, in that case we would measure

an impedance, Ztotal that includes any stray capacitance to ground. Conversely, by

placing the resistor between the sample and ground, as in Figure 4.3b, the stray

capacitance forms a separate current arm and does not contribute to Ztotal. Note,

however, that crosstalk between the “input” and “output” sides of the circuit is

still possible via mechanisms such as stray capacitance, mutual inductance, RF and

ground loops.

4.4 Experimental configurations

4.4.1 Measurement setup A

For a basic quantum Hall measurement in the Hall or van der Pauw geometry,

it is practical to apply a fixed current to the sample and measure the resulting volt-

age. An example of such a measurement is shown schematically in Figure 4.4. The

current source is simply composed of a voltage source and a very large resistance

(Rsource � Rsample). The current through the sample is then given by Vsource/Rsource.

The voltage between two points at the sample can be measured either at the same

contacts (for a two point measurement) or other contacts (for a four point measure-

ment).
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Figure 4.4: Basic 4 point measurement scheme for Hall or VdP geometry.

Bandwidth considerations

In all of our thermal relaxation time measurements, the maximum relevant

frequencies are below 1 MHz. At that frequency, the wavelength of electromagnetic

waves is 300 m, which is much larger than the length of the wires in our apparatus.

Therefore, we do not have to consider the effects of reflection and standing waves

(i.e. impedance matching) in the circuit, and can instead perform a simpler low-

frequency analysis. The bandwidth of our measurement is then set either by the

designed bandwidth of the measurement instrumentation, or the RC-time constants

built into the circuit. The main source of capacitance is the stray capacitance

between the long wires and ground (except on those wires where RC filters are

deliberately introduced, which are used only for low frequency measurements). The

measured capacitance to ground is 2 nF per wire if the sample is connected to the

breakout box on the rack, and 0.6 nF if measured directly at the top of the cryostat.

In Figure 4.4, wires 2, 3, and 4 all have stray capacitance, but their most direct

resistive path to ground is through the sample itself. Since the two point resistance

of the sample (in Hall or van der Pauw geometry) is roughly the Hall resistance, or

10 kΩ at ν = 5/2, the measurement bandwidth is limited to

fBW =
1

2πRC
=

1

2π × 10 kΩ× 0.6 nF
= 27 kHz (4.5)

This bandwidth is far too low for the measurements discussed in Chapter 7, making

this measurement scheme unsuitable for those experiments. The situation would

be even worse in the Corbino geometry, which has a significantly higher two-point

resistance in the MΩ range.
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4.4.2 Measurement setup B: two-point using a current pream-

plifier

In the Corbino geometry, the sample has only two contacts and a large mag-

netoresistance (over 100 kΩ, diverging beyond GΩ in IQH states). If the previous

circuit were used, the voltage across the device would tend toward Vin in IQH states.

Additionally, we are interested in the sample’s conductance, rather than its resis-

tance. For these reasons, it makes more sense to apply a fixed voltage and measure

the resulting current. The schematic for this setup is shown in Figure 4.5.

Figure 4.5: Basic 2 point conductance measurement scheme for Corbino geometry.

Bandwidth considerations

In this case, the RC-limited bandwidth is set by the 100 Ω resistor on the input

side and the input impedance of the preamplifier on the output side. Using the 106

gain setting on the SR570 current preamplifer, the input impedance is also 100 Ω.

Therefore, the bandwidth would be 2.6 MHz, however the SR570 is limited to only

200 kHz bandwidth on this setting. Higher bandwidth is achievable by lowering the

gain, but this comes at the expense of significantly higher input noise (60 pA/
√

Hz

for 800 kHz bandwidth, compared to 2 pA/
√

Hz for 200 kHz bandwidth). Some of

my early measurements of thermal relaxation times in high filling factor IQH states

were performed using this measurement scheme, and 200 kHz was just barely ade-

quate. In Chapter 7, higher bandwidth was required, and a different measurement

circuit had to be used.
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4.4.3 Measurement setup C: 2-point using a sense resistor

To overcome some of the problems associated with using a dedicated current

preamplifier, we can instead insert a resistor into the current path, measure the

voltage drop across it, and calculate the current using Ohm’s law. Figure 4.6 shows

such a measurement scheme, with the sense resistor placed between the sample and

ground. The sense resistor could, alternatively, be placed at the input side of the cir-

cuit, between the voltage divider and the sample. However, as discussed in 4.3.3, in

that case it would detect the total current entering the refrigerator, including current

flowing into the parallel path to ground formed by the stray capacitance between

the input wiring and ground. At 100 kHz, the impedance of this stray capacitance

is roughly |Z| = 1/ωC = 1.6 kΩ, which is much smaller than the sample impedance.

Therefore, the contribution to the signal due to changes in the conductance of the

sample would be tiny relative to the large background.

Figure 4.6: Basic 2-point conductance measurement scheme for Corbino geometry.

The effective current noise in this scheme is given by the effective voltage noise

at the preamplifier input, divided by Rsense.

ĩ2 =

√
ṽ2
in + 4kBTRsense + ṽext.

Rsense

, (4.6)

where ṽin in the preamplifier’s equivalent input noise and ṽext. is noise due to ex-

ternal interference (ground loops, emf pickup, microphonics etc.). Accordingly, it is

always better, in terms of in, to increase the value of Rsense, even when its Johnson

noise becomes the dominant noise source. In practice, Rsense was chosen based on

the required measurement bandwidth. Using Rsense = 1 kΩ and the SR560 pream-

plifier (vin = 4 nV/
√

Hz), the current noise is 5.7 pA/
√

Hz. This is worse than the

2 pA/
√

Hz noise listed on the SR570 manufacturer’s specficitations, however the
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achievable bandwidth is higher and there is no input bias current.

Bandwidth considerations

For this circuit, the bandwidth at the input is the same as it is in setup B,

10 MHz. On the output side, the bandwidth is set by the 1 kΩ resistor, and is

265 kHz (corresponding to a time constant of 0.6 µs). This value was chosen as a

tradeoff between signal-to-noise ratio (SNR) and bandwidth.

4.4.4 Measurement setup D: lower noise 2-point using a

cooled sense resistor

The actual voltage noise measured in setup C was found to be around 20 nV/
√

Hz,

which is higher than the expected 5.7 nV/
√

Hz due to the combination of Johnson

noise in Rsense and the SR560’s input noise of 4 nV/
√

Hz. The additional noise arises

due to the presence of numerous digital instruments on the equipment rack, which

are both located inside the Faraday cage and strongly coupled to the refrigerator.

An example of the problem can be seen in Figure 4.7. Panel (a) shows a nearly flat

spectrum up to the preamplifier’s bandwidth cutoff frequency of 1 MHz. The noise

level of 0.5 mVrms corresponds to about 6 nV/
√

Hz equivalent input noise. However,

when the Lakeshore 370 is turned on, as in panel (b), there is much more noise above

300 kHz, peaking at 900 kHz. This noise is particularly problematic, since it lies

in the frequency range of interest for the thermal relaxation time measurements in

Chapter 7.

With all instrumentation either turned off or moved out of the Faraday cage,

the voltage noise is limited by the combination of the preamplifier and the sense

resistor. The NF LI-75A preamplifier has lower noise (ṽin = 2 nV/
√

Hz), than the

SR560 (ṽin = 4 nV/
√

Hz), although it tends to be less able to reject external noise

than the latter. In a “quiet” Faraday cage, it does indeed meet specifications and

lower the measured noise. The new limiting factor is then Johnson noise in the 1 kΩ

sense resistor. This can be reduced from 4.1 nV/
√

Hz to 2.1 nV/
√

Hz by immersing

the resistor in a liquid nitrogen bath. Using the full setup shown in Figure 4.8,

measurements with just 3 nV/
√

Hz noise level were achievable.

Lower noise may still be achieved by cooling the sense resistor to 4 K and using

one of the few preamplifiers that claim even lower input noise levels (Signal Recovery
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Figure 4.7: Example noise spectra when measuring the voltage across the sample.
(A) Spectrum with all instruments within the shielded room turned off, except for
the preamplifier. The digitizer (Zurich Instruments HF-2 lock-in) is located outside
of the Faraday cage. (B) Identical setup to A, but with the Lakeshore 370 resistance
bridge turned on.

Figure 4.8: Basic 2 point conductance measurement scheme for Corbino geometry.

5184 and NF SA series, for example). In order to achieve an even higher signal-

to-noise ratio, one could use a cryogenic preamplifier or detect the current using a

superconducting quantum interference device (SQUID).
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4.5 Summary

To obtain thermal relaxation data, it is necessary to set up a measurement

scheme with low noise but also sufficient bandwidth. Our setup has just barely

enough bandwidth for the experiment. In practice, we are able to measure con-

ductance transients with time constants very close to the electrical RC time, by

carefully examining the assymmetry of the square wave response waveform (turning

on bias vs. turning off bias). The actual square wave response also differs from a

simple RC response due to the inductance of the wiring. The actual response data,

as well as the data processing steps required to make sure we isolate the conductance

transient, are described in Chapter 7.
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Chapter 5

Fractional quantum Hall effect in

the Corbino geometry

One of the key concepts in both mathematics and physics is topology; that is,

that some properties of a physical or abstract object are determined by very general

characteristics, such as its number of edges, surfaces, holes and the connectedness

between them, rather than specific geometric details. This chapter discusses the

quantum Hall effect in samples with an unusual topology, the Corbino disk, which

features only two contacts that are not connected by any edges. We will begin

with a brief historical and theoretical overview of the Corbino geometry, followed

by a discussion of sample characterization and transport measurements in the FQH

regime. Finally, we will revisit an old idea: that the value of the y-intercept of an

Arrhenius plot of conductance in a FQH state is related to the fractional charge of

the quasiparticles. Intriguingly, this model seems to hold in the first Landau level,

but not in the more exotic second Landau level.

5.1 Topology and the Corbino Geometry

A classic example of topology is the donut, which is, in some sense, the same

as a mug with a handle: both are three-dimensional objects formed by a single

surface punctured by a single hole. In practice, the two objects have nothing in

common despite their topological similarity. Knotted strings provide a more useful

example: a string with a slip knot is equivalent to an unknotted string, since one can

be deformed to the other with a single tug, while a proper knot cannot be untied

without letting go of one end of the string. Although the knot and the slip knot

appear to be similar, they are topologically distinct and therefore have very different

practical applications.
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Figure 5.1: a) Hall, b) van der Pauw and c) Corbino geometries, showing current
paths (dashed arrow) from source (S) to drain (D). The grey regions represent the
2DEG, while the yellow regions represent the ohmic contacts.

In the same way, the Hall bar and Van der Pauw (VdP) samples often used

in quantum Hall experiments are topologically identical: they are both single 2D

objects with a single outer edge and no holes, as can be seen in panels (a) and (b) of

Figure 5.1. Therefore, the results of electronic transport measurements are the same

for both (up to some geometric factors, and possible mixing of Rxy and Rxx), and

are dominated by edge state conduction in the QH regime. In this chapter, we will

consider the Corbino geometry, which consists of an annulus with an inner and outer

contact, as shown in Figure 5.1c. The Corbino disk is topologically distinct from the

other two geometries, since it has just two contacts that are not connected by any

edges. As such, current in the Corbino geometry cannot be carried by edge states,

unlike in the Hall and VdP geometries. In the IQHE and FQHE, the conductance

between the contacts vanishes instead of the resistance as in the other two cases,

since the current is forced through the bulk insulating region rather than along

the dissipationless edge modes. For this reason, the Corbino geometry provides an

excellent platform to study what happens in QH states far from the edge of the

sample.

5.2 History of the Corbino geometry

The Corbino effect was first reported in 1911 by Italian physicist Orso Mario

Corbino [50]. He noted that when a voltage is applied between the inner and outer

rims of a punctured disk of conducting material in a perpendicular magnetic field,
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Figure 5.2: Spiral current path in a Corbino disk exposed to a perpendicular mag-
netic field.

the resulting current will travel in a spiral path due to the Lorentz force (as shown

in Figure 5.2). Since the current path is much longer than the direct one that would

be followed in the absence of a B-field, the resistance between the two edges is

enhanced even if the intrinsic resistivity of the material itself does not vary with

magnetic field.

Around 1960, the Corbino disk attracted attention due to the realization that

the tangential component of the spiral current path will itself generate a perpendic-

ular magnetic field, which will in turn affect the sample [51–54]. It was thought that

the nonlinear effect of this self-feedback phenomenon could be used to build a prac-

tical rectifier or even an amplifier. Of course, that technology was never developed,

due to the rapid development of silicon-based semiconductor electronics.

The Corbino geometry once again became relevant with the discovery of the

IQHE in 1980 [7]. Very early on, Laughlin realized the importance of topology in

the IQHE and used a variant of the Corbino geometry in his 1981 theory paper

on the subject [55]. Since then, it has occasionally been used by both theorists

and experimentalists to distinguish between bulk and edge effects in the IQHE and

FQHE.

5.3 Conductance in the Corbino geometry

Conventionally, quantum Hall studies are performed using Hall bar samples.

The reason for this is that it allows for independent measurement of the Hall (Rxy)

and longitudinal (Rxx) components of the resistance. As previously discussed, these

two components show strikingly different behaviours. While Rxx exhibits SdH os-

cillations, ultimately approaching zero resistance in QH states, Rxy exhibits a linear
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magnetic field dependence with the signature well-quantized plateaus of the quan-

tum Hall effect. While these two phenomena have led to our understanding of IQH

and FQH physics, both are signatures of the formation of 1D dissipationless edge

channels. Let us now take a look at transport between two contacts that are not

connected by any edges, in the Corbino geometry.

5.3.1 Total resistance between the contacts

Interestingly, the resistance between the two contacts of a Corbino device is

proportional to 1/σxx, rather than ρxx. Recall from Chapter 2, that σxx ∝ ρxx.

Therefore, the conductance in Corbino looks a lot like the resistance in a Hall bar.

We can calculate the total resistance, R, between the two contacts by first consider-

Figure 5.3: Diagram of a Corbino disk, showing an annulus and segment thereof for
the purpose of calculating its conductance.

ing a small piece of the sample of length dr and width rdθ, as shown in Figure 5.3.

In steady state, Maxwell’s equations state that the line integral
∮
~E · d~l′ = 0, and

therefore, by symmetry, Eθ = 0 when considering the path to be the circle of radius

r. However, note that there may still be a current flow jθ. We might naively set out

to calculate R from ρxx by calculating the electric field due to an applied current

density, (
Er

0

)
=

(
ρxx ρxy

−ρxy ρyy

)(
jr

jθ

)
, (5.1)
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but it is more straightforward to work with conductivity by writing down the con-

ductance, (
jr

jθ

)
=

(
σxx σxy

−σxy σyy

)(
Er

0

)
, (5.2)

which simplifies to jr = σxxEr. The resistance of the annulus with radius r and

width dr is then

dR =

(∫ 2π

0

σxxrdθ

)−1

dr =
dr

2πrσxx
, (5.3)

and the resistance between inner and outer contacts is

R =

∫ r2

r1

dr

2πrσxx
=

log (r2/r1)

2πσxx
. (5.4)

Conventionally, we measure the conductance, since the resistance diverges as σxx

vanishes at QH minima. The relation

2πσxx = G log (r2/r1) (5.5)

relates the microscopic transport property (σxx) to the macroscopically measurable

quantity (G). Figure 5.4a shows an example measurement of Rxx and Rxy in a

Hall bar. Using those two measurements and the known sample dimensions, σxx

was calculated and is shown in Figure 5.4b. The behaviour of σxx is qualitatively

similar to ρxx, apart from an overall scaling factor of 1/B2 which leads to a rapidly

increasing conductivity as B approaches zero (see inset). The differing behaviour

between ρxx and σxx in Figure 5.4 can help us develop an intuition about how to

interpret these two quantities. In Figure 5.4a, we see that ρxx basically oscillates

around its zero field value - at least, until the oscillation amplitude becomes too

large and the minima reach zero. We may think of ρxx as the material’s intrinsic

resistivity, related to the carrier lifetime and DOS near the Fermi level. Conversely,

the conductivity, σxx, decreases drastically with increasing magnetic field, since it

factors in not only changes to the carrier lifetime and DOS due to magnetic effects,

but also the lengthening of the current path due to the Corbino effect. We may

think of σxx as the actual bulk conductance of the 2DEG (albeit normalized to

remove geometric factors); i.e. a measure of its ability to move charge in response

to an applied electric field, and the relevant property to use when calculating power

dissipation in a Corbino disk. This intuition about ρxx and σxx can also be shown
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Figure 5.4: a) Rxx and Rxy measured in a Hall bar (device HB01, described in
Appendix A). b) σxx calculated from Rxx and Rxy, reflecting what the conductance
of a Corbino device fabricated from the same wafer would look like (up to a geometric
scaling factor). The inset shows σxx from 0 to 0.22 T. Note the different scale on
the inset - mS instead of µS.

more formally in the Drude model with a magnetic field, where it can be shown that

ρxx = m∗
nee2τ

and σxx ≈ ρxx
ρ2xy

. Because ρxx is a more direct measure of the microscopic

carriers’ physics, it is necessary to convert σxx to ρxx before attempting to extract

transport lifetimes from the conductance data.

5.4 Fabrication of Corbino geometry devices

The Corbino geometry samples used in this thesis are GaAs/AlGaAs het-

erostructures grown by molecular beam epitaxy (MBE). Rather than attempting

to cut or etch the samples into disc shapes, we simply deposited the two contacts

using e-beam lithography, as shown in Figure 5.5. Both Corbino devices have an in-

ner contact radius r1 = 0.25 mm, outer contact inner radius r2 = 1.0 mm and outer

contact outer radius r3 = 1.5 mm. Although several samples were fabricated, only

two were used in the experiments reported in this thesis. The first, CB01, was grown

at Sandia National Laboratories and has a mobility of around 106 cm2/V · s. The

second, CB05, was grown at Princeton University and has a much higher mobility

of around 2.5× 106 cm2/V · s. Further details of the two samples are provided in

Appendix A, and detailed characterization, including measurements of their electron

density and mobility, are provided in the next sections.
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Figure 5.5: Photograph of a typical Corbino device similar to CB01 and CB05.

5.5 Characterization of sample CB01 (high-mobility

device)

5.5.1 Density and mobility determination

The Corbino geometry presents special challenges when trying to determine

the sample’s mobility and electron density. In the Hall and VdP geometries, one

can simply perform a linear fit to Rxy(B) to determine the electron density and

measure Rxx(B = 0) to determine the mobility (as discussed in reference [8], for

example). In the Corbino geometry, there is no simple way1 to measure Rxy to

determine the density. It is also a two-terminal device, and as such it is impossible to

accurately separate the 2DEG’s resistance from the contact resistance. To determine

the electron density, ne, we can look at G(B) and identify the IQH features for which

the filling factor is known. Assuming ne is fixed, the minima are centred at field

values,

Bν =
neh

νe
, (5.6)

where ν takes on integer values. Knowing that the conductivity minima must be

spaced in B according to equation 5.6, we can readily infer the filling factors from

the ratios of the locations of the minima in B. Figure 5.6 shows an example of G vs

B in CB01 with minima labelled by their filling factor. From this labelling, we find

1It is possible to drive an azimuthal current in the device using a time-varying magnetic field
and measure the resulting voltage [56–58], yielding σxy.
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Figure 5.6: Conductance of CB01 at 450 mK, showing IQHE with labelled filling
factors.

ne = 4.59× 1011 cm−2 in this sample. At zero magnetic field, the resistance of the

sample is much smaller than the combined contact and lead resistance, preventing an

accurate measurement of the zero-field mobility. To partially overcome this problem,

CB01 had four wires attached: two to each contact. This way, it was possible to avoid

measuring the lead resistance, however the contact resistance was still inevitably

included in the resistance measurement. Figure 5.7 shows the resistance of CB01

around B=0, using a 13.5 Hz, 10 nA, current-biased measurement (setup A). Using

equations 2.8 and 5.5, we can write down R in terms of ρxx as

R =
log(r2/r1)

2π

(
ρxx +

ρ2
xy

ρxx

)
+Rcontact. (5.7)

By substituting ρxy = B/nee and µ = (ρxxnee)
−1 into the above equation, we obtain

R =
log(r2/r1)

2π

(
ρxx +

B2

neeρxx

)
+Rcontact. (5.8)

If we fit R(B) with a parabola, we can extract the value of ρxx around B = 0 from

the prefactor of B2 independently of Rcontact. Such a fit is shown in Figure 5.7b,

yielding ρxx = 14.5 ± 0.5 Ω and µ = 9.6 ± 0.3 × 105 cm2/V · s. The same fit also
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Figure 5.7: a) Resistance of CB01 near B = 0. b) R data (green line) and a least-
squares fit (black line) of the equation R = a× (B −B0)2 + c, where a and c are
used to extract the mobility and contact resistance as described in the text, and
B0 allows for a possible offset of the true zero field. Using the results of the fit
and the procedure outlined in the text, we find µ = 9.6± 0.3 × 105 cm2/V · s and
Rcontact = 3.24± 0.05 Ω (indicated by the red line). Uncertainties were estimated
by varying the fitting range between ±0.1 T and ±0.2 T, and reflect the slight
systematic deviation of the data from purely parabolic behaviour.

yields Rcontact = 3.24 ± 0.3 Ω, as shown by the red horizontal line. Since the inner

contact is smaller in area than the outer one by a factor of 20, we can infer that it

is the main source of the measured contact resistance.

5.5.2 Conversion to ρxx and Dingle plot

Based on equation 2.8, ρxx can be calculated from σxx and ρxy as

ρxx =
1±

√
1− 4σxxρxy

2σxx
, (5.9)

where the positive sign is used for low field where ρxx > ρxy and the negative sign

is used for ρxx < ρxy. Figure 5.8 shows ρxx calcuated for CB01 from the same data

shown in Figure 5.7. Note that the apparent “jump” in ρxx is an artefact due ot

the sensitivity of equation 5.9 to the precise value of ρxy near the crossover point

where ρxy becomes larger than ρxx. It is not immediately clear whether the general

increase of ρxx with B is due to changing contact resistance, magnetoresistance of

the Corbino itself, or an error in the calculation of the contact resistance. The latter

could occur if ρxx is field dependent very close to B = 0, due to, for example, weak
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Figure 5.8: SdH oscillations plotted in ρxx and Dingle plots. a) ρxx (in blue) calcu-
lated from Corbino resistance using equation 5.9. |ρxy| = |B|/ne, is also shown in
red. b) ρxx vs 1/B, showing evenly-spaced SdH oscillations and the moving average
of ρxx (black line). c) Dingle plot using 1/B2 on the x-axis (appropriate for Gaus-
sian broadening). d) Dingle plot using 1/B on the x-axis (appropriate for Lorentzian
broadening).
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localization [8].

SdH oscillations provide a way to estimate the Landau level broadening Γ,

or equivalently the quantum lifetime τq, of electrons in the 2DEG. As shown in

Figure 5.8b, the SdH oscillations in this sample appear in the vicinity of B=0.095 T.

Since the onset of the oscillations requires separation of LLs on the order of their

broadening, we can immediately estimate Γ = 12 K from the value of ~ωc at the onset

field. The broadening can also be expressed as the quantum lifetime, τq = ~/2Γ,

which is ∼ 0.3 ps based on the extinction point estimate. A more formal way to

find Γ is to plot ρxx vs 1/B, as shown in Figure 5.8b and construct a Dingle plot

of the amplitude of the SdH oscillations. It has been shown [59] that if the LLs are

broadened by a Lorentzian function, then the amplitude of the oscillations is given

by
∆ρxx
ρxx

= A exp

( −π
ωcτq

)
, (5.10)

where A is a constant that depends on the relationship between conductance and

the underlying DOS. If the broadening is Gaussian instead, the SdH amplitude is

given by
∆ρxx
ρxx

= A exp

(−2π2Γ2

~2ω2
c

)
, (5.11)

where the Gaussian broadened LLs take the form exp(−(ε− εn)2/2Γ2) [59]. Based

on equations 5.10 and 5.11, the form of the broadening function can be distinguished

by fitting log(∆ρ/ρ) to 1/B2 and 1/B and seeing which one is closest to linear. Such

fits are plotted in Figure 5.8c and d 2. The fit vs 1/B2 is more linear, with only a

slight deviation of the data points from the linear trend at low values of 1/B2. This

is often observed [6] as ∆ρ approaches ρ and the SdH oscillations begin to deform.

The plot versus 1/B is clearly curved with a negative second derivative everywhere.

These two results are overall similar to the results of Piot et. al., and lend support to

a model of Gaussian-broadened disorder. Based on the fit to 1/B2, the broadening

is Γ = 1.2 K or τq = 3.3 ps. However, it should be noted that the temperature for

these measurements, 450 mK, is not much lower than Γ, and there could be finite

temperature effects built into the estimate of Γ. The intercept of the Dingle plot

fits is expected to be A = 2 if ρxx is proportional to the DOS, and A = 4 if ρxx is

proportional to the square of the DOS. For the fit to 1/B2, we find A = 0.61, which

2Note that the resistance of the sample throughout the plotted range exceeds 200 Ω, making
the fit insensitive to any error in the measured contact resistance of less than 5 Ω.
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is much closer to the theoretically expected values than A = 39 for the 1/B fit,

further validating that Gaussian-broadened disorder is a better description of the

data. However, the fact that A is off by a factor of four from the closest theoretically

predicted value is surprising, and suggests that the nature of the disorder in this

sample is not fully captured by the simple Gaussian broadening model in [59].

5.6 Magnetotransport in an ultra-high mobility

Corbino device

Figure 5.9: Magnetoconductance of sample CB05, with labelled integer and frac-
tional quantum Hall minima.

In this section, we will characterize a second sample, CB05, which is fabricated

on a much higher mobility wafer. As shown in Figure 5.9, this sample shows a rich

array of features in its magnetoconductivity. In addition to the labeled IQH minima,

there are peaks and dips corresponding to various many-body phases: bubble phases,

stripe phases and FQH states. We will discuss this device’s behaviour in three

magnetic field regimes. First, we will use the techniques introduced in the previous

section to estimate the sample’s mobility and quantum lifetime from its conductivity

and SdH oscillations in the low field regime (B < 1 T). Next, at intermediate fields

(1 T < B < 3.2 T), we will look at the electronic stripe and bubble which occur for
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ν > 4 in ultra-high mobility samples. Finally, we will discuss the FQH states which

occur for ν < 4 (B > 3.2 T).

5.6.1 Low field characterization of CB05
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Figure 5.10: SdH oscillations plotted in ρxx and Dingle plots. a) ρxx (in blue)
calculated from Corbino resistance using equation 5.9. b) ρxx vs 1/B, showing
evenly-spaced SdH oscillations and the moving average of ρxx (black line). c) Dingle
plot using 1/B2 on the x-axis (appropriate for Gaussian broadening). d) Dingle plot
using 1/B on the x-axis (appropriate for Lorentzian broadening).

Figure 5.10a shows the low-field resistivity of the sample calculated from σxx,

with σxy assumed to be simply the classical Hall conductivity for ne inferred from
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the QH minima labelled in Figure 5.9. According to measurements performed by

the sample grower at 0.3 K, the wafer had a mobility of 25 × 1011 cm2/V · s and a

density of 3×1011 cm−2. The expected zero field value of ρxx is then 0.83 Ω, which is

close to the value at the lowest field measured in Figure 5.10a. The extremely high

quality of this sample is also apparent from the appearance of SdH oscillations at a

very small magnetic field, 0.040 T, which suggests τq = 4.8 ps and Γ = 0.8 K. The

results of Dingle plot analysis using 1/B2 roughly agree with the simple extinction

point estimate, yielding τq = 6.7 ps and Γ = 0.6 K. As in CB01, plotting versus 1/B

gives an obviously less linear fit.

The extracted value of τq is much smaller than the transport lifetime calculated

from the sample mobility, τt = 950 ps, as expected for samples in which long-

range scattering from remote impurities is the primary scattering mechanism [8,

60, 61]. The quantum lifetime is also smaller by about a factor of five than the

value, τ = 33± 3 ps, found for another sample previously measured in our lab [8].

We tentatively attribute the lower quantum lifetime to the density, structure of the

wells and location of the dopants (i.e. setback distance). Sample CB05 has roughly

twice the density (3.06×1011cm−2 vs. 1.6×1011cm−2) and half the setback distance

(80 nm vs. 160 nm) of the sample in reference [8]. This may lead to an increase in

the scattering rate, and consequently to an increased Landau level width.

5.6.2 Bubble and stripe phases in high Landau levels

At filling factors between ν = 4 and ν = 14, we observe rich behaviour of the

conductivity between the IQH minima, as shown in Figure 5.11. These additional

peaks and dips are due to bubble and stripe phases, rather than FQH states, and

have been studied primarily around ν = 4, 5 and 6 [62–64]. Their presence at even

higher filling factors indicates the extremely high quality of the sample.

The stripe phases, occurring at half-filling of each LL, are known to be anisotropic

[62, 63]. Since our Corbino-geometry sample is radially symmetric, we are unable

to check for this anisotropy, instead measuring the integral of the conductance in

all directions. The current between the contacts preferentially flows in the easy

direction - hence, we observe a peak, even if conductivity in the hard direction is

greatly suppressed. We observe “textbook” examples of such peaks at ν = 6 + 1/2,

ν = 7 + 1/2 and ν = 8 + 1/2. At still higher filling factors, the peak can just

be discerned up to ν = 10 + 1/2. Going the other direction in magnetic field, at
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ν = 4 (and to some degree at ν = 5), the peak in conductivity is suppressed. One

possible explanation for this is that the anisotropy in conductance forces the current

to flow only along a narrow strip (with width equal to the inner contact diameter),

increasing the current density and therefore the local temperature of the 2DEG via

Joule heating. The measurements in Figure 5.11 were performed using a current

preamplifier with a DC bias of up to 5 nA, which may have been sufficient to cause

self-heating.

1.0 1.5 2.0 2.5 3.0

B (T)

0

5

10

15

20

σ
(µ

S
)

13 12 11 10 9 8 7 6 5 4

Figure 5.11: Temperature evolution of IQHE and RIQHE in high filling factors.
Conductivity vs. field at base temperature of 22 mK (blue), 80 mK (green), 100 mK
(red), 120 mK (purple) and 153 mK (gold).

The primary series of bubble phases are visible as well-developed minima on

the flanks of the IQH minima up to ν = 9. At still higher filling factors, they appear

to slightly deform the flanks of each IQH minimum up to ν = 13. The persistence

of both these bubble phases and the stripe phases to such high filling factors is also

a strong indication of the extremely high quality of the sample.

5.6.3 Activation measurements of fractional quantum Hall

states

At filling factors above ν = 4, we observe minima in the conductivity due to

the FQHE. These include ν = 5/2 and ν = 7/3 in the SLL, as shown in Figure 5.12.

To determine the energy gap, ∆, of each state, we performed standard Arrhenius
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Figure 5.12: Magnetoconductance and Arrhenius plots in the LLL and SLL. a) σxx vs
B in the SLL at base temperature, Tmc = 23 mK. b,c) Arrhenius plot of conductivity
minimum versus the inverse temperature at ν = 5/2 and ν = 7/3. d) σxx vs B in
the LLL at base temperature, Tmc = 23 mK. e,f) Arrhenius plots at ν = 5/3 and
ν = 8/5. The red lines are a linear fit to subsets of the data and correspond to the
gap energies. These, and the intercept values are reported in Table 1.

fits as shown in Figure 5.12b and c, using the relation σxx = σ0e
−∆/2kBT . The gaps

for ν = 5/2 and ν = 7/3 were determined to be 147 ± 7 mK and 107 ± 5 mK

respectively. Larger energy gaps are expected based on numerical calculations (see

[48] and references therein) and experimentally measured activation gaps as high as

450 mK have been reported previously in the literature [65]. The relatively modest

gap we observe may be due to some combination of the precise quantum well shape

and disorder of the sample. The disorder, in particular can be tuned by LED

illumination of the sample during the cooldown procedure, which is known to have

effects on ν = 5/2 beyond simply changing the sample density and mobility [66].

Conductivity extrapolation

Prior to successful measurements of shot noise in the FQH regime, there was

great interest in any experimental approach to the problem of confirming the pre-

dicted fractional charge of FQH quasiparticles. One approach was to look at the
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Table 5.1: Arrhenius fit parameters for data shown in Fig. 5.12.

ν ∆ [mK] q σ0 [µS] hσ0/q
2

5/2 147± 7 e/4 1.09± 0.07 0.45± 0.03
7/3 107± 5 e/3 0.84± 0.05 0.19± 0.01
5/3 4180± 210 e/3 5.1± 0.2 1.19± 0.35
8/5 1380± 70 e/5 2.2± 0.4 1.39± 0.25

prefactor σ0 from the Arrhenius fit, which was predicted to be

σ0 =
2q2

h
, (5.12)

at least for disorder in the form of long-range random potential as discussed in

references [67, 68]. Since, in the Corbino geometry, we measure σxx directly, it is

trivial to extract σ0 from the y-intercept of the Arrhenius plots in Figure 5.12,

yielding the values for σ0 presented in Table 5.1. The values of q in the table are the

theoretically predicted quasiparticle charge at each filling factor (with e/4 used at

ν = 5/2 based on the assumption of a Pfaffian wavefunction and supported by shot

noise measurements [21]). The uncertainties in ∆ and σ0 are estimated statistical

errors based on the fits.

At ν = 5/3 and ν = 8/5, which are LLL states with relatively large gaps

(∆ > 1 K), we find q2/h < σ0 < 2q2/h. This is in line with a calculation by

d’Ambrumenil et al. showing that for realistic models of disorder, tunneling effects

reduce the value of σ0 below the value given by equation 5.12 [68]. In the SLL,

we observe much larger deviation from the theoretical prediction, suggesting that

further work is required to understand transport in this regime. In the future, it

would be interesting to repeat the experiment in a sample where the SLL states

have even larger energy gaps, in order to resolve whether the discrepancy is related

to the details of the disorder or is intrinsic to SLL transport.

5.7 Summary

The Corbino geometry is particularly interesting for FQHE studies because it

provides a way to probe the bulk of the sample in transport measurements, unlike

Hall measurements which are most often dominated by edge physics. We have

fabricated and characterized an ultra-high mobility Corbino sample, CB05, which

60



Chapter 5. Fractional quantum Hall effect in the Corbino geometry

shows many signatures of strongly-interacting electron physics, including a FQHE

minimum at ν = 5/2. Finally, we revisited the subject of σ0 in Arrhenius plots. Our

results in the first Landau level are consistent with past experimental and theoretical

results, however in the second Landau level σ0 does not follow the expected (naive)

relationship between σ0 and q. It is not immediately obvious why this is the case,

although it suggests at the very least that transport in the SLL is not fully captured

by existing models.
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Chapter 6

Thermalization of a 2DEG in the

FQH regime

The difficulty of cooling electrons is a well-known challenge in semiconductor

physics, with the electronic temperature in GaAs/AlGaAs heterostructures often

observed to saturate well above the base temperature of the refrigerator. Colloqui-

ally, this is understood to be due to the phonons “freezing out” at low temperature,

leaving electron diffusion as the only cooling mechanism. While it is true that the

electron-phonon coupling is weak at low temperature, we will show that, in the

case of a millimetre-scale Corbino device, the electron-phonon interaction is still the

dominant cooling mechanism even below 100 mK. Based on our experimental data

and modelling, the extrapolated crossover to electron diffusion cooling occurs only

in the few-mK temperature regime.

The fact that cooling electrons is difficult also presents an opportunity: it means

that there is a built-in “weak link” between the 2DEG and the phonon bath. Thus, it

is possible to design an experiment to measure specific heat where the “system” is the

2DEG itself and the “environment” is the phonon bath - a major improvement over

previous experiments [69–71] where the “system” included the entire GaAs/AlGaAs

heterostructure, plus contacts, thermometer, heater etc. This chapter includes both

a general overview of 2DEG thermalization and specific calculations relevant to the

experimental work presented in the next chapter.

6.1 Thermal Circuit Model

A system thermalizing to its thermal environment can be modelled as a thermal

circuit, in which temperature gradients and heat flows may be thought of as thermal

equivalents of voltage and current. In the simple model shown in Figure 6.1a, a tem-

62



Chapter 6. Thermalization of a 2DEG in the FQH regime

Figure 6.1: Thermal circuit model and its electrical analogue. (a) Thermal circuit
consisting of a body (green) with heat capacity C, a thermal link (yellow) with
thermal conductivity K to the environment (grey) and a heater (blue) dissipating
power P within the body. A thermal current Q̇ and temperature difference ∆T
result. (b) The electrical analogue of the thermal circuit, with components and
values coloured to match their thermal equivalents. A capacitor with capacitance
C is grounded by a resistor with resistance R (equivalent to 1/K in the thermal
circuit) and charged by a current source Iin. As a result, a current Iout flows across
the resistor and a voltage V develops across the capacitor.

perature difference, ∆T , drives a heat current Q̇, from the body to the environment

via a thermal conductor. For a small temperature difference, the relationship be-

tween ∆T and Q̇ is linear, and we can define a thermal conductance1, K = Q̇/∆T ,

analogous to electrical conductance G. The relationship between Q, and T for the

body is given by the heat capacity, C ≡ ∂Q
∂T

. In the equivalent electrical circuit,

shown in Figure 6.1b, heat takes the place of charge and temperature takes the

place of voltage. Therefore, heat capacity is the equivalent of electrical capacitance.

Continuing the analogy, we can also recognize that the thermal circuit shown in

Figure 6.1a has a characteristic RC time constant given by τ = C/K. If a heat

source within the body is turned on or off in a step, the temperature response will

be

∆T (t) = ∆Tinitiale
−t/τ + ∆Tfinal

(
1− e−t/τ

)
. (6.1)

The rest of both this chapter and the next one will discuss our measurements of K,

τ , and thus C. We begin by reviewing previous theoretical and experimental work

1Throughout this thesis, the upper case letter kappa (K) is used to denote thermal conductance.
Thermal conductivity is denoted by lower case kappa (κ).
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regarding the thermal link between a 2DEG and its environment.

6.2 Theory and literature review

The bulk of the 2DEG can potentially thermalize with the environment via two

primary mechanisms: electron-phonon coupling (i.e. emission of phonons into the

3D bulk GaAs) and thermal diffusion within the 2DEG to the contacts. We can

characterize each of these by an effective thermal conductivity, denoted κe−ph and

κWF respectively. Note that κe−ph is in units of W/K ·m2, since it is proportional

to the area of the 2DEG, whereas κWF is in W/K with an implied “per-square”

geometric dependence analogous to the 2D electrical conductivity σxx.

6.2.1 Electron diffusion: Wiedemann-Franz law

In the case where both heat and charge are carried by the same quasiparticles

(or electrons), the electrical and thermal conductivities are directly related to one

another according to the WF law,

κWF = σxxL0T, (6.2)

where L0 ≈ π2

3

(
kB
e∗
)2

is the Lorenz constant [72, 73] for quasiparticles of charge e∗.

Equation 6.2 has no dependence on dimensionality, since the dependence of the

thermal and electrical diffusion constants on dimensionality are the same.

Violations of the Wiedemann-Franz law

Besides cases where phonons provide another heat conduction channel, a num-

ber of other cases have been suggested where the WF law does not hold. In metals,

the value of L0 is empirically found to be slightly different from the theoretical pre-

diction. The WF law assumes that the relaxation time for thermal and electrical

conductance are identical, which is true for large-angle elastic scattering, but not

small-angle inelastic scattering [74]. The latter would lead to a loss of heat as the

quasiparticle diffuses, resulting in a reduced thermal conductivity.

Other violations of the WF law occur in correlated transport. Most obviously,

cooper-paired electrons in a superconductor transport charge but not heat. Con-

versely, neutral excitons formed by bound electron-hole pairs can transport heat
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but not charge. Such neutral fermions are expected to exist at ν = 5/2 and may

contribute to thermal transport [75].

Karavolas and Triberis [76] have calculated the ratio κ/σ for the quantum Hall

regime, and shown that the WF law is violated near half-filling in broadened Landau

levels when T > Γ. This is because the WF law is only strictly valid when the DOS

is approximately linear within kBT of the Fermi level, which is not true when kBT

is comparable to the LL width, Γ.

6.2.2 Electron-Phonon interaction

The electron-phonon interaction in GaAs heterostructures has been extensively

studied both theoretically and experimentally, with a particular focus on the tem-

perature range between 1 and 10 K. At those temperatures, phonon scattering limits

the mobility of the 2DEG and the speed of GaAs based sensors such as hot-electron

bolometers [77, 78]. This section will first provide a general overview of phonon

scattering in GaAs heterostructures, and then focus on what is known about the

low temperature regime (below 1 K) where our experiments were performed.

Phonon modes and interaction types

Phonons are vibrations (or sound waves) in the crystal lattice, which can be

emitted when an electron in the 2DEG loses energy or absorbed to add energy to

an electron. It is well-known that the phonon dispersion relation exhibits two types

of modes: acoustic phonons have nearly linear dispersion at low energy, whereas so-

called optical phonons have much higher energy even for small wavevectors. At low

temperature, only acoustic phonon modes can participate in scattering, since optical

phonons have energy much larger than kBT . Acoustic phonons may be further

categorized according to the type of vibration: transverse or longitudinal. Transverse

phonons can scatter with electrons via the deformation potential interaction and the

piezoelectric (PZ) interaction, while longitudinal modes interact via PZ effects only.

Bloch-Grüneisen regime

For either interaction type, we can further break down the temperature regime

by considering momentum conservation in scattering and the strong phase-space

restrictions that happen at low temperature [79]. In the case of an electron gas at
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temperature Te > Tph, an electron can lose its excess thermal energy by emitting a

single phonon of typical energy kBTe and corresponding wavevector qtyp = kBTe/~s,
where s is the speed of sound in the crystal. This is only possible if momentum

conservation can be fulfilled, that is, if qtyp < 2kf as shown in Figure 6.2. At higher

temperatures, where qtyp > 2kf , an electron has to emit multiple phonons to lower its

energy by kbTe. These low- and high-temperature regimes are known as the Bloch-

Grüneisen and equipartition regimes, respectively, and the crossover temperature

between them is given by kBTc = 2kf~s. For GaAs, the speed of sound is 3300 m/s

[40], and for our usual electron density of 3 × 1011 cm−2, kf = 1.4 × 10−6cm−1.

Therefore, Tc = 5.5 K, which is much higher than our experimental temperature

range (T < 150 mK), and all of our measurements are therefore in the Bloch-

Grüneisen regime.

Figure 6.2: Fermi circles and wavevectors in the Bloch-Grunëisen and equipartition
regimes. At low temperature (B-G regime, shown on the left), an electron can
scatter from k1 to k2 by emitting or absorbing a single phonon with wavevector qtyp.
At higher temperatures (equipartition regime, shown on the right), qtyp for Te is
too large to scatter between any pair of k1 and k2 on the Fermi surface. Multiple
phonons must be emitted for the electron to change its energy by kBTe. Figure
redrawn based on [80].

Role of dimensionality

Due to the close lattice matching between GaAs and AlGaAs, the phonons are

not confined to the 2DEG plane (unlike in metallic thin films, where the acous-
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tic impedance mismatch between the metal and substrate confines the phonons).

Therefore, we must consider the interaction between 2D-confined electrons and 3D

phonons. During a scattering event, momentum and energy must be conserved. In

the x-y plane, this means that an electron scattering from k to k′ scatters with a

phonon with wavevector q = k′ − k. On the other hand, the quantum well fixes

the position of the electron in z, which means its momentum is unknown according

to Heisenberg’s uncertainty principle. Therefore, qz can take values within a range

of approximately 1/b, where b is the width of the z direction wavefunction. More

formally, we can define a form factor, I(qz), which can then be used to weight the

scattering probability for emission (or absorption) of a phonon with a wavevector

component qz. We define I(qz) as follows:

I(qz) =

∫
ψ2
ze
iqzzdz, (6.3)

where ψz is the z-direction wavefunction normalized such that
∫
ψ2
zdz = 1.

Power emission model

A model for the low temperatures electron-phonon power emission rate in GaAs

heterostructures was first developed by Price [81]. Additional derivations of the same

result can be found in works by Karpus [82] and Mittal [80]. Taking into account

the appropriate scattering mechanism (PZ interaction with acoustic phonons in the

BG regime), the form factor I(qz), and the appropriate corrections for screening and

phonon dispersion anisotropy [83,84], yields the expression

Pemitted = 1.37n
− 1

2
e T 5

[
W

cm2

]
(6.4)

for the power emitted by the 2DEG, where ne here is in units of cm−2.

6.2.3 Experimental results in the literature

Low field power emission measurements

The model described in the previous sections has been tested experimentally

by multiple groups. Appleyard et. al. [84] have measured the temperature of the

2DEG as a function of DC heating power at zero magnetic field, by using diffusion
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thermopower in a 1D constriction as a thermometer. Their results, shown in Fig-

ure 6.3, are in excellent agreement with the model in equation 6.4, with a crossover

to electron diffusion as the primary cooling mechanism below 500 mK.

Figure 6.3: Power emission from a 2DEG measured at zero magnetic field using
thermopower in two different 1D constrictions (A and B) as a thermometer. Equa-
tion 6.4 is shown by the dashed line, while the solid line is a fit to the data including
terms for both phonon emission and electron diffusion. The sample parameters are
ne = 2.1× 1011 cm−2 and µ = 4.56 cm2V−1s−1. Data and fits from reference [84].

Most other attempts to measure power emission rates in GaAs have made use

of the temperature sensitivity of SdH oscillations as the thermometer, and thus were

necessarily performed in a magnetic field. Gammel et. al. [85], Mittal et. al. [86]

and Chow et. al. [87] all found P ∝ T 5, but with larger prefactors. However,

Zhang et. al. [88] have raised serious concerns about the use of SdH oscillations

as a thermometer while applying a DC voltage. They argue that spectral diffusion

modifies the electron distribution into a non-equilibrium distribution, rather than

a Fermi distribution at higher temperature. Moreover, they show that even small

changes to the shape of the distribution function can strongly affect the observed

conductivity, leading to significant errors in the inferred temperature using this

technique.
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Phonon contribution to mobility

The mobility, µ, of a sample is essentially the conductivity per carrier, given by

µ = σ/nq, where n is the carrier density and q is the carrier charge. Each scattering

mechanism contributes to the mobility, and much like conductivities they can be

summed according to Matthiessen’s rule:

1

µ
=

1

µimp
+

1

µe−ph
+ . . . (6.5)

Störmer et. al. [79] have used this rule to extract µe−ph from the temperature

dependence of µ from 0.3 to 40 K. Their data fits well to a model of acoustic

phonon scattering based on the same assumptions as equation 6.4. In a followup

study, Kang et. al. [89] measured µ at both zero field and ν = 1/2. They found a

drastically enhanced scattering rate for CF’s compared to electrons at B = 0, and

also a weaker temperature dependence. Their results are summarized by the solid

lines (and hatched areas indicating estimated uncertainties) in Figure 6.4.

Phonon contribution to thermopower

If a thermal gradient is applied to a GaAs wafer, a “phonon wind” will be estab-

lished from the hot side to the cold side. This is simply because phonons with larger

momentum can be emitted from the higher temperature side than from the cold

side. When these phonons are absorbed by electrons in the 2DEG, the average mo-

mentum in the 2DEG is from hot to cold. Eventually, electrons build up at the cold

electrode, creating an electric field that counteracts the force of the phonon wind.

Since this phenomenon has at its core the electron-phonon coupling, it is possible to

extract the scattering rates from phonon drag thermopower measurements. Indeed,

Tieke et. al. [90] have published results for µe−ph at B=0 and µcf−ph at ν = 1/2

and compared them to direct mobility measurements by Kang et al. [89]. Their

zero-field results agree at the order of magnitude level with Kang et al. At ν = 1/2,

both groups see significant decrease in µ, suggesting stronger coupling between CFs

and phonons than between electrons and phonons. However, their results differ by

more than one order of magnitude. One possible explanation for the discrepancy is

the significant differences in mobility between the samples, perhaps placing them in

different regimes of disorder [91].
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Figure 6.4: Experimentally determined µe−ph at B=0 and ν = 1/2 from resistiv-
ity(solid lines and hatched areas, representing scatter in the data) and thermopower
(closed circles). Figure based on reference [90], including resistivity data originally
published in reference [89].

Summary

The electron-phonon interaction has been studied both experimentally and the-

oretically using many different approaches. At zero magnetic field, a theoretical

model based on screened piezoelectric interaction has been experimentally validated.

At higher magnetic field, and especially in the interacting regime, the picture is less

clear. Finally, both theory and experiment agree that the strength of the electron-

phonon interaction is enhanced by several orders of magnitude compared to its
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strength in the absence of magnetic field.

6.3 Model of electron diffusion and phonon scat-

tering contributions in our device

In our specific heat experiments, the electron system is heated by a current

passed through the 2DEG itself, raising its temperature relative to the phonons

and contacts. At the same time, we use the temperature-dependent conductance of

the 2DEG as a thermometer for the electron system. In order to predict whether

electron diffusion or phonon scattering is the dominant cooling mechanism in the

experiments, we use a simple model for the radial temperature profile in the device

when heated by a radial current. The contacts are assumed to be at the same

temperature as the phonons, and we define ∆T (r) = Te(r) − Tph. The differential

equation describing ∆T (r) is

∂∆T (r)

∂t
=

1

c

[
κwf

1

r

∂

∂r

(
r · ∂

∂r
∆T (r)

)
+

i2

(2πr)2σxx
− κph∆T (r)

]
, (6.6)

which is simply the radially symmetric diffusion equation with additional terms rep-

resenting dissipation to the phonon bath and input Joule heating. For this diffusion

equation to be valid, we require that the electron mean free path is much smaller

than the device dimensions. For sample CB05, the mean free path at B = 0 T

is roughly 200 µm, while the inner and outer radii of the 2DEG are 250 µm and

1000 µm respectively. However, in a strong magnetic field, the radial mean free path

is reduced by several orders of magnitude due to the Corbino effect (see Chapter 5).

We assume that the contacts are at the same temperature as the phonon bath, and

therefore use the boundary conditions ∆T (r1) = ∆T (r2) = 0.

The steady state solution is found by setting the left hand side to zero. The

solution for electron diffusion only (setting κph = 0) is

∆T (r) =
P

4πκwf

log( r
r1

) · log( r2
r

)

log( r2
r1

)
, (6.7)

which is plotted in Figure 6.5a. In the case where electron diffusion is negligible,
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the electron-phonon term dominates, and the steady state solution is

∆T (r) =
P

2πκph log( r2
r1

)r2
, (6.8)

which is plotted in Figure 6.5b. Comparing the two cases, the hottest part in the

diffusion case is near r = 0.5 mm, far from both contacts. In contrast, the hottest

part in the phonon-cooled version is near the inner contact, where the current density

(and thus, power density per unit area) is highest.

Figure 6.5: Analytical solutions for the temperature profile in our Corbino device
under constant voltage bias. (a) Cooling through the contacts via electron diffusion.
(b) Cooling through the electron-phonon interaction. Insets show the same data as
2D radial color plots.

Estimated relative contributions of electron diffusion and phonon emis-

sion

To simulate both diffusion and phonon emission simultaneously, we solve Equa-

tion 6.6 numerically for initial conditions ∆T (r, t = 0) = 0 and boundary conditions

∆T (r1) = ∆T (r2) = 0. We then take the average of ∆T at each time step, weighted

appropriately to account for the contribution to G at each radial position, in order to

find the apparent temperature change, ∆Tapparent, as measured by conductance (see

Equation C.5 in Appendix C). From the asymptotic behaviour, we find the appar-

ent thermal conductance, Kapparent ≡ ∆Tapparent(t→∞)/Papplied. The thermal time

constant, τ , is found by fitting an exponential to ∆Tapparent(t). We can also calcu-

late the power flow to each of the contacts, which indicates the relative importance

72



Chapter 6. Thermalization of a 2DEG in the FQH regime

0.01 0.10 1.00
10−18

10−15

10−12

10−9

10−6

K
a
p
p
a
re
n
t
(W

/K
)

a)

0.01 0.10 1.00
10−9

10−6

10−3

τ
(s

)

b)

0.2 Ω (B = 0 T)

500 kΩ (SLL)

0.01 0.10 1.00

T (K)

0.0

0.2

0.4

0.6

0.8

1.0

P
W
F
/P

A
p
p
li
ed

c)

Figure 6.6: Calculated thermalization of a 2DEG with our usual sample geome-
try using both WF law and equation 6.6 for phonon power emission using a B=0
model. Blue lines correspond to 0.2 Ω resistance across the Corbino, as expected
at B = 0 based on measurement of the sample’s electron mobility. Red lines are
calculated with 500 kΩ, which is a typical value observed at high magnetic field.
Note that experimentally observed enhancement of the electron-phonon coupling at
high magnetic field is not taken into account. a) K vs. temperature. The dotted
line corresponds to WF law for 0.2 Ω, the dash dotted line corresponds to WF law
for 500 kΩ, and the dashed line is the calculated Kapparent for phonon emission. b)
Thermal time constant, calculated using the B=0 theory for 2D electron specific
heat. c) Fraction of total power leaving via the contacts in steady state (the remain-
der is emitted to the lattice). The shaded region in all panels is the approximate
temperature range for our measurements.
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of diffusion and phonon emission. The results of the calculation, using a realistic

model of phonon emission at B = 0 T (Equation 6.4) and Wiedemann-Franz law

for two example values of Rtotal, are shown in Figure 6.6.

In the absence of magnetic field, the high mobility of our sample allows electrons

to rapidly diffuse to the contacts. In the blue curve in Figure 6.6a, we see that at

low temperature, K follows the weak (linear) temperature dependence of electron

diffusion. Correspondingly, τ is constant as shown in Figure 6.6b, and the fraction

of power leaving via the contacts approaches 100% as shown in Figure 6.6c. This

calculation shows similar behaviour to the experimental results of Appleyard et.

al. [84] in a square sample of roughly the same area, in which they saw the crossover

from phononic to electronic cooling at around 500 mK (see Figure 6.3).

Conversely, in a magnetic field our sample has a very large resistance between

the two contacts, implying that electrons cannot easily diffuse to the contacts. As

a rough estimate, we performed the same cooling calculation as before, but with

500 kΩ total resistance for the sample. The results are plotted as the red curves

in all three panels of Figure 6.6. The crossover between cooling mechanisms is

at a much lower temperature than in the B = 0 case, at around 20 mK. Previ-

ous measurements at high magnetic field, including in the SLL, suggest that the

electron-phonon coupling is significantly enhanced [85–87, 89, 90]. Therefore, we

expect electron diffusion to make a negligible contribution to thermalization in a

strong magnetic field.

6.4 Summary

In the low temperature regime, the temperature of a 2DEG may differ from the

temperature of the phonons in its host material. When heated by, for example, a

current passing through the 2DEG, it may thermalize by either electron diffusion to

the ohmic contacts or directly to the phonons via the electron-phonon interaction.

Based on theory, previous experimental work and numerical modelling, the primary

mechanism by which the 2DEG thermalizes in a mm-scale Corbino device is phonon

emission, with electron diffusion only playing a major role at temperatures well

below 50 mK.
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Specific heat and entropy in the

second Landau level

As discussed in Chapter 3, specific heat is closely related to entropy, and mea-

suring it holds promise as a means to detect the non-Abelian entropy at ν = 5/2. In

this chapter, I present measurements of the thermal relaxation time of the 2DEG,

and the effective thermal conductance between it and the phonon bath, which to-

gether can be used to find its specific heat. The measurements were performed in the

second Landau Level, including at ν = 5/2. From this data, I also calculated S(T )

and found it to be in excellent agreement with existing thermopower data taken

by the Eisenstein group at Caltech. Although a more thorough study and lower

temperatures would be required to detect the non-Abelian entropy, the technique is

quite promising based on these results.

7.1 Experimental protocol

In order to determine the specific heat, c, we measure both the thermal re-

laxation time τ and the thermal conductance K. To measure τ , we opted for a

time-domain experiment, where we observe the temperature change of the 2DEG

(using its conductance as a thermometer) to a step change in applied Joule heating

power. To measure K, we measure 2DEG temperature (again via conductance) as

a function of DC heating power. In early iterations of the experiment, τ and K

were measured in separate data runs, using a small applied voltage to measure the

2DEG’s conductance as it cooled down after a larger voltage was turned off, and

separately recording dv/di versus VDC . However, I was able to optimize the experi-

ment by instead determining both τ and K from a single dataset, as detailed in the

remainder of this section.
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7.1.1 Unipolar square wave scheme

Figure 7.1: Applied unipolar square wave voltage excitation (a) results in a square
wave in heating power (b). The temperature of the 2DEG (c) increases and decreases
with a time constant τ . Its conductance (d) varies similarly. The resulting current
(e) can be used to determine both τ and G(Th).

Rather than attempting to use a large voltage to drive heating and a small

voltage to measure conductance, we introduce a simplified scheme where the voltage

excitation is a unipolar square wave, as shown in Figure 7.1a. The resulting power

dissipated in the 2DEG is also a square wave (to first order, i.e. neglecting changes

in G), as shown in Figure 7.1b. The temperature of the 2DEG changes as a result,

however it takes a time τ to warm up or cool down each time the power turns on or

off (Figure 7.1c). Note that for small ∆T , the heating and cooling time constants are

the same. The conductance of the 2DEG varies with its temperature (Figure 7.1d),

but we can only observe it by measuring the current, i(t), during the time that the

voltage is on, as shown in Figure 7.1e. We can find τ by fitting an exponential to

the i(t) data. We can also measure G(T0, P ), and in turn K, from the same i(t)
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dataset by repeating the experiment for several values of P . Furthermore, these

quantities are measured with the maximum possible applied voltage (the voltage

used to heat the 2DEG), and therefore have an optimized SNR compared to a

“pump-probe” experiment where a much smaller “probe” excitation is used to read

out the differential conductance.

7.1.2 Extraction of K

Figure 7.2: Electron temperature vs. Joule heating power at ν = 5/2. Each data
series corresponds to a different mixing chamber temperature (from 20 to 140 mK, in
5 mK increments). Voltage biases at each temperature were 0.5 to 5 mV in 0.5 mV
increments. The linear fits were determined using either the first 4 data points, or
those that result in a temperature change of less than 7 mK. Filled markers indicate
data points used in the fit, while empty markers were omitted.

To obtain K from the square wave response data, we analyze the slope of Te

versus P in the low power limit. An example dataset is shown in Figure 7.2. Each

set of points was obtained at a fixed phonon (i.e. substrate) temperature, with

increasing applied voltage. For each combination of Tph and P , the conductance G

was found from the value of Imeas/Vhigh reached in steady state, at least 5τ after

the voltage was turned on. We then fitted a cubic spline to Te versus G for the
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lowest applied power, which was then used to infer Te from G measured with larger

applied power. Finally K for each phonon temperature was determined by fitting a

line to Te(P ) in the low power limit (either the first four points, or a maximum ∆T

of 7 mK, as shown in Figure 7.2), and multiplied by a geometric correction factor

of 1.83 applied as described in Appendix C.

7.1.3 Extraction of τ and data cleaning procedure

The thermal time constant τ is determined from the same square wave data set

used to find K, by fitting an exponential function to the transient in conductance

when the current is turned on. However, in addition to the thermal time constant,

electrical resonances and time constants within the measurement setup may also

modify the shape of the original square wave. These unwanted signal corruptions

can be mitigated by time-shifting the signal by half a period and adding it to the

original signal, as shown in Figure 7.3, before performing the exponential fit. This

correction procedure works when the undesirable part of the signal is symmetric, in

the sense that it is identical (up to a DC offset) when inverted and then shifted by

half a period. For example, the response of a simple RC circuit to a square wave

input is symmetric, so the nulling procedure reduces it to a flat line. In contrast, the

thermal transient in the sample only appears in the “turn-on” step response and not

in the “turn-off” response, and hence survives the subtraction procedure, as shown

in 7.3b. One should be cautious though, since other combinations of non-linearity

with frequency-dependence could also generate a signal that would appear in the

output signal i(t).

To help understand the effect of the nulling procedure in different situations,

Figure 7.4 shows a block diagram of the measurement circuit, highlighting the dif-

ferent regions that may introduce time constants. The sample is assumed to be the

only non-linear component (apart from the preamplifier, which has a finite band-

width but is assumed to have negligible distortion). Coupling between the input

and output sides of the circuit is modelled as “crosstalk”, with the crosstalk contri-

bution to the output voltage simulated by multiplying the input voltage by a factor

γ. Figure 7.5 shows the result of applying the nulling procedure to the simulated

output of the circuit for a variety of situations. If all time constants are extremely

short (or zero, as in Figure 7.5a), the raw output signal is just a square wave like

the input signal. In this case, the “shift-and-add” nulling procedure gives a flat DC
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Figure 7.3: “Shift and add” procedure to null extraneous transients. a) Simulated
raw signal and time-shifted signal on the same axes. b) Sum of the raw and time-
shifted signals (green) and fitted exponential function (black).

output.

Figure 7.4: Simplified schematic diagram of the experimental setup showing the
different regions (dashed line boxes) that could deform the input square wave due
to thermal or electrical time constants.

If τin is non-zero, we have one of the most problematic cases to deal with. Since

the square wave’s shape is modified by τin before the nonlinearity of the sample is

applied, the shape of the high and low parts of the waveform get scaled by different

factors and cannot be cancelled out by the nulling procedure. For this reason, our

experimental design uses a small 100 Ω resistor on the input side of the circuit

and, based on the stray capacitance of the wiring, we estimate τin = 60 ns. Since

this timescale is an order of magnitude faster than the thermal time constants we

79



Chapter 7. Specific heat and entropy in the second Landau level
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Figure 7.5: Simulated output for a simple model of the experiment. The first
column shows the raw current output, while the second column shows the output
after applying the shift-and-add procedure described in the text. a) With τ = 0
for each part of the circuit, the output is simply a square wave, and can be nulled
to a DC output. b) In the case where τin is large, the nonlinearity in the sample
allows the transient to survive the nulling procedure. c) If the time constant is on
the output, after the nonlinear element, the transient can be fully nulled out. d)
If the sample itself is the source of the time constant, the transient fully survives
the nulling procedure, as desired. e) Additional direct linear coupling between the
input and output sides of the circuit can lead to odd-looking raw data, but can be
fully cleaned up by the nulling procedure.

observed, it is not expected to affect our experimental results.

If τout dominates, the situation is not as bad, since the square wave sees the

non-linearity of the sample before being modified by τout. Because the signal re-

mains symmetric, the “shift-and-add” procedure can completely null the signal in

the τT << τout case. However, τout still provides a bandwidth limitation for the

experiment.

80



Chapter 7. Specific heat and entropy in the second Landau level

If τT is the dominant time constant, the thermal transient perfectly survives the

nulling procedure, as shown in Figure d. Furthermore, if some current passes directly

from the input to the output side of the circuit due to crosstalk (e.g. capacitive

coupling, mutual inductance, ground loops, RF), those (presumably linear) effects

can be completely nulled out as shown in Figure 7.5e.

7.1.4 Example raw data

Figure 7.6: Response of sample to square wave with Vlow = 0 mV and Vhigh = 1 mV
(green), 2 mV (red), 3 mV (purple), 4 mV (yellow) and 5 mV (cyan). (A) and
(B) show the response to the voltage turning on. (C) and (D) are shifted by half a
period, such that (D) shows the “turn-off” to 0 mV bias. (E) and (F) are obtained by
adding the original and time-shifted signals, in order to cancel any voltage transient
(due to, for example, LCR resonances in the wiring). The black lines in (F) are
exponential fits to each curve. Extrapolation of the curve beyond the fitting range,
towards t = 0, is shown in dark grey.
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Measurements were performed using setup C, as described in section 4.4.3, and

sample CB05. Experimental time traces at ν = 5/2 are shown in Figure 7.6 for a

series of excitation voltages. The raw data, resulting from averaging ∼ 106 iterations

of the square wave excitation, is shown in panels a and b. The time-shifted version,

required for the nulling procedure outlined in the previous section, is shown in panels

c and d. Finally, the results of the nulling procedure are shown in panels e (the sum

of panels a and c) and f (the sum of panels b and d). Exponential fits, from which

τ is extracted, are shown in panel f.

Importantly, the exponential fits all extrapolate to intersect at nearly the same

point, labelled (t0, G0), which strongly suggests that the dominant non-linearity in

the sample turns on with a single time constant τ . If there were some other faster

non-linearity, such as a diode-like effect at the contacts, the fits would not appear

to emanate from a single point. Instead, they would already be shifted relative to

one another at t0. This observation supports the use of G(P, T0) to find Te, and by

extension K.

7.2 Results
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Figure 7.7: a) Conductance at base temperature. Labeled filling factors indicate
where measurements of τ , K and C were performed.

The experimental procedure discussed in the preceding section was used to

gather data for several filling factors in the SLL at refrigerator temperatures rang-

ing from 20 mK to 140 mK. The specific filling factors are marked on Figure 7.7,
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which shows the sample’s conductance at base temperature. In addition to the four

marked FQH states, the experiment was also performed at ν = 2.57, where we ob-

served a strong increase of conductance with decreasing temperature (whereas the

opposite is observed in FQH states). Within the temperature range of our experi-

ment, we did not observe the re-entrant integer quantum Hall state, conventionally

labeled R2c [92], that has previously been reported at the same filling factor at lower

temperatures [93]. Data at a fifth FQH state, ν = 11/5, which is visible as a sharp

dip to the right of ν = 7/3, are not available due to a technical issue during the

data collection run.

7.2.1 Thermal conductance to the environment

We first turn our attention to the measurements of K, which are shown in Fig-

ure 7.8. We find that K has the same order of magnitude and a similar temperature

dependence across filling factors, with ν = 2.57 showing the largest deviation from

the rest. As discussed in Appendix C, if cooling were primarily through electron

diffusion, we would expect K = 12GL0T ≈ 10 fW/K, which is several orders of

magnitude smaller than what we observe. Although this means that diffusion of

charged quasiparticles is not the dominant cooling mechanism, it is still possible

that there could be cooling by diffusion of neutral quasiparticles [75], which are not

believed to obey the Wiedemann-Franz law. Moreover, being chargeless, they would

also be immune to the Corbino effect and may diffuse more easily, even in a strong

magnetic field. However, one would expect the formation of neutral quasiparticles

to be highly dependent on filling factor, while our results for K are quite consis-

tent throughout the second Landau level. Therefore, a more likely explanation is a

cooling process due to phonon emission.

In chapter 6, we discussed a model for the cooling rate of a 2DEG due to phonon

emission. Recasting equation 6.4 in terms of K, and substituting in the area and

electron density of our sample, we would expect K = 370 T 4 [nW/K], or 37 pW

at 100 mK. Our measured value of K is about two orders of magnitude larger,

which is consistent with the enhanced phonon emission rates seen at high magnetic

field in previous experimental studies [87, 89, 90]. A theoretical study of the CF-

phonon interaction also predicts it to be much stronger than the electron-phonon

interaction [91].

Besides the magnitude, it is also interesting to look at the exponent of the
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temperature dependence of K. The inset of Figure 7.8 shows K vs T on a log-

log scale, as well as straight lines with slopes corresponding to T 3, T 3.4 and T 4

dependencies. The T 4 slope, expected for the zero-field model, is clearly steeper

than our data, while the T 3 slope, corresponding to a hydrodynamic model discussed

by Chow et al. [87] is too shallow. The slope of our data lies somewhere in between,

around T 3.4. A more detailed theoretical analysis of K than either model would

have to take into account the gapped DOS at FQH minima, rather than assuming

a flat DOS as at B = 0.
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Figure 7.8: Thermal conductance to the environment as a function of temperature
for several filling factors in the SLL. The inset shows the same data on a log-log
scale with lines, at arbitrary vertical positions, indicating slopes of 3 (dotted), 3.4
(dashed) and 4 (dot-dashed).

7.2.2 Thermal relaxation time

Measurements of the 2DEG’s thermal relaxation time are shown in Figure 7.9.

The data was obtained by fitting an exponential function to the plot of conduc-

tance vs time, after performing the nulling procedure outlined in section 7.1.3. For

each data point, the electron temperature was inferred from the final conductance
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Figure 7.9: Thermal relaxation time τ measured as a function of Te (as calculated
from conductance measurements). Data from multiple phonon temperatures have
been binned based on Te in 5 mK bins and averaged.

reached, rather than the temperature of the sample stage. Data from multiple runs

were then binned in 5 mK increments.

Previous estimates of τ were based on measurements of K and the assumption

that C(T ) takes its zero-field value and temperature dependence [85–87]. To my

knowledge, our measurements reported here are the first direct measurements of

the thermal relaxation time of a 2DEG in the fractional quantum Hall regime. We

find that, as expected, τ decreases with increasing electron temperature. There is

some variation in τ between different filling factors, with ν = 5/2 having the longest

relaxation time, followed by ν = 7/3 and ν = 8/3, which are quite similar to each

other. The differences between filling factors may be due to differences in the size,

charge, density and screening of quasiparticles.
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7.2.3 Specific heat

Having directly measured both τ and K, we are able to determine C, the heat

capacity of the 2DEG via the formula C = Kτ . Since the size of the sample is

arbitrary, we instead report the specific heat per electron in units of kB, defined as

c ≡ C/kBNe. The results for each filling factor are plotted in Figure 7.10b, alongside

corresponding plots of G(Te) in Figure 7.10a. At most filling factors, both c and G

increase monotonically with temperature. However, at ν = 2.57, G decreases with

increasing temperature, even as c increases. We will revisit this result later in this

chapter when we discuss the entropy of the 2DEG.

In order to better understand the data, we can begin by considering the specific

heat of a non-interacting fermi liquid,

c =
πm∗kBT

3~2nq
, (7.1)

where m∗ is the effective mass of the fermions, and nq is the quasiparticle density.

In a GaAs heterostructure at B = 0, the relevant quasiparticles are electrons with

band effective mass m∗ = 0.067me. The calculated B = 0 specific heat, shown by

the dashed lines in Figure 7.10b, is substantially lower than any of the measured

values for c. However, in the fractional quantum Hall regime, the relevant effective

mass is not the electron band effective mass. Instead, it might make more sense

to consider the effective mass of composite fermions, which has previously been

estimated to be 1.3me at ν = 3/2 from thermopower data [40], and between 0.7me

and 1.2me (depending on density) at ν = 1/2 in cyclotron resonance measurements

[94]. Assuming mCF around ν = 5/2 is of a similar order of magnitude, we have

plotted equation 7.1 again using m∗ = me and nq = ne as the dotted line in each

panel of Figure 7.10b. The calculation roughly captures the magnitude of the specific

heat data, however there is clear deviation from simple linear behaviour at most

filling factors. This deviation is expected, since the model in equation 7.1 is for a

simple Fermi liquid with a flat density of states, while gapped FQH states occur

at most of the measured filling factors. Instead, we can consider the following toy
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Figure 7.10: (a) Conductance vs. temperature for several states in the SLL. (b)
Specific heat vs. temperature at the same set of filling factors. Fits to equation 7.3
are shown by the solid black lines, and the resulting ∆’s are given on each plot,
while g0kB/ne = 0.18, 0.12, 0.16 and 0.25 K−1 for ν = 14/5, 2.57, 5/2 and 7/3,
respectively. The dotted line is the specific heat for free 2D electrons (m∗ = me),
while the dashed line is the specific heat for 2D electrons in GaAs at zero field
(m∗ = 0.067me).
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model for a gapped DOS:

g(ε) =





g0 : ε < εf −∆/2

0 : εf −∆/2 < ε < εf + ∆/2

g0 : ε > εf + ∆/2.

(7.2)

This model represents a DOS given by two flat regions separated by a gap ∆, with

the fermi level exactly in the middle of the gap. The corresponding specific heat is

c =
2g0

ne

(
∆2

4kBT
+ ∆ + 2kBT

)
e−∆/2kBT , (7.3)

which, when fitted to the data, yields the black curves in each panel of Figure 7.10b.

Based on these fits, we find ∆ between 300 mK and 570 mK for the different filling

factors. We can also estimate the quasiparticle effective mass from the fits, using

the equation

m∗ = π~2g0. (7.4)

The resulting values are m∗ = 1.4me at ν = 5/2 and m∗ = 2.1me at ν = 7/3. An

alternative to Equation 7.3 is to use a standard Arrhenius plot to fit the data, as

shown in Figure 7.11, which yields similar values for ∆.

7.2.4 Comparison of ∆ from specific heat to ∆ from conduc-

tance

The values of ∆ extracted from the specific heat are much larger than those

obtained from conventional Arrhenius fits to the conductance, which are shown in

Figure 7.12a. In particular, from specific heat we find ∆ = 300 mK at ν = 5/2 and

∆ = 450 mK at ν = 7/3, whereas the corresponding values from conductance are

103 mK and 131 mK respectively. The origin of the small measured energy gaps

in the second Landau level, relative to those calculated either by exact diagonal-

ization or numerically [48], has been a longstanding question in the study of the

second Landau level. One possible explanation is that the apparent gap inferred

from conductance data is reduced due to the details of conductance in the presence

of disorder. In a model put forward by d’Ambrumenil et. al [68], they consider

transport through a disorder potential, which is limited by the necessity for the

quasiparticles to move across the saddlepoints separating “valleys” in the potential
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landscape. They further provide a method to calculate the saddle-point gap, ∆s,

from the value of ∆ obtained from the Arrhenius plot of conductance along with

Ti, the temperature of the inflection point in the same Arrhenius plot. Using their

method, we obtain the values ∆s = 300 mK and 330 mK for ν = 5/2 and ν = 7/3,

respectively, which are in much better agreement with the gaps obtained from the

specific heat data. This suggests that using the specific heat may be more accurate

than conductance as a means to determine ∆, which makes sense, since the former

is a direct thermodynamic measurement while the latter may be affected by the

details of transport in the system.
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Figure 7.11: Arrhenius fits to c in the SLL.
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Figure 7.12: (a) Arrhenius fits to the conductivity at each indicated filling factor,
with data in blue and linear fit to the activated region in red. The inflection point
is marked by a red circle. (b) Corresponding plots of the Arrhenius slope vs. tem-
perature, with data as points and a smoothed spline interpolation in green. The
minima give −∆/2, and their locations in temperature give Ti.

7.2.5 Entropy

The entropy of the 2DEG can be found (up to a constant) from the heat capacity

by integrating over temperature according to the equation

S(T )− S0 =

∫ T

T0

C

T ′
dT ′, (7.5)

where S0 is the entropy at T0. As previously discussed in Chapter 3, the longitudinal

thermopower Sxx can also be used to find the entropy via the relation

Sxx = − S
|e|ne

, (7.6)

which is valid in the clean limit [39]. In Figure 7.13, we plot ∆S = S(T ) − S0,

measured at ν = 5/2 and ν = 7/3 obtained in two different ways: from our specific

heat data (via numerical integration of C
T

data points, using the trapezoidal rule),

and from thermopower data reported by Chickering et. al. (Figure 2 of ref [43]). In

the case of the heat capacity data, ∆S is simply found by calculating the right-hand

side of equation 7.5. For thermopower, we use linear interpolation to find S0 =

Sxx(T0), where T0 ≈ 45 mK is the lowest temperature at which C was measured,
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and subtract that offset from all the Sxx data. The results from these two different

techniques are in excellent agreement at both filling factors, strengthening the case

that their interpretation in terms of entropy is correct.

Figure 7.13: Entropy as determined from longitudinal thermopower data [43] and
from integration of our specific heat measurements. The thermopower data is offset
such that ∆S = 0 at the lowest temperature for which we measured C. a) Entropy
at ν = 5/2 and ν = 7/3. The thermopower data is shifted by the offsets S0 =
0.58µV/K and S0 = 0.26µV/K at ν = 5/2 and ν = 7/3, respectively, as shown
by the scale bars on the figure. b) Entropy at ν = 2.57, including the onset of
the re-entrant state R2c in the thermopower, but not within the temperature range
over which specific heat was measured. The thermopower data is shifted by S0 =
4.8µV/K, which is the value of Sxx measured at T0 = 50 mK (the lowest temperature
where c was measured).

One puzzling aspect of the specific heat data is the activation-like behaviour of

c at ν = 2.57 in Figure 7.10, where there is no FQH gap. However, this result is in

qualitative agreement with the thermopower data measurements by Chickering et.

al., as shown in Figure 7.13b. The thermopower data (green circles) shows a step in

Sxx, corresponding to onset of the re-entrant state R2c. We do not observe the onset

of the R2c, which would appear as a peak in c, within our measured temperature

range (red triangles in Figure 7.13b). This is consistent with our conductance data,

in which R2c was also not observed. However, at higher temperatures both the Sxx

and c data increase super-linearly, in qualitative agreement with one another. The

increase of S we observe with temperature is higher than that seen in the ther-

mopower measurement, but is of a similar order of magnitude. The difference may

be due to variation between the samples: the reentrant states are highly sensitive

to sample quality and preparation (i.e. whether and for how long an LED was used
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to illuminate the sample during the cooling procedure). It would be interesting to

measure the specific heat through the temperature regime where the step in Sxx was

observed, and see whether there is a corresponding spike in c.

7.3 Summary

In this chapter, we introduced a novel experimental approach to measuring

the specific heat of a 2DEG in the quantum Hall regime. By taking advantage of

the thermal “weak-link” between the electrons and the phonons, and measuring on

a short enough timescale, we were able to determine both the thermal relaxation

time of the 2DEG and its thermal conduction to the environment. Specific heat

data for several filling factors in the SLL were obtained, including at ν = 5/2

and ν = 7/3. Integration of the specific heat to obtain entropy yielded results in

excellent agreement with previous measurements of the entropy via thermopower,

demonstrating the potential of the new experimental technique.
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Conclusion and future work

8.1 Conclusion

8.1.1 Transport in the Corbino geometry

We have reported the first Corbino-geometry transport measurements in the

second Landau level, including the 5/2 FQHE. Since our work in GaAs was orig-

inally published [3], Corbino geometry devices in graphene were shown to exhibit

enhanced FQHE signatures compared to Hall bar devices [95, 96]. In contrast, our

GaAs/AlGaAs device exhibited behaviour similar to that previously observed in

non-Corbino devices fabricated from similar wafers. We did not observe novel or

significantly enhanced phenomena compared to Hall geometry transport measure-

ments, however we have demonstrated the viability of ultra-high mobility Corbino

samples as a tool to study the fractional quantum Hall effect in the bulk.

8.1.2 Specific heat of a 2DEG in the quantum Hall regime

Using our Corbino sample and a novel technique, we were able to achieve the

first reported measurement of the specific heat of a 2D electron system in the quan-

tum Hall regime, in absolute units with no phonon contribution. Our technique is

based on in-situ Joule heating of the 2DEG, and measurement of its temperature

using electrical conductivity. By measuring the timescale for thermal relaxation (on

the order of microseconds) and the electron-phonon thermal conductivity (typically

on the order of pW/mK), we were able to determine c from a simple thermal RC

circuit model. We observed an activation-like behaviour of c, with gap energies

of 300 mK and 450 mK for ν = 5/2 and ν = 7/3 respectively. These values are

considerably higher than those determined from standard Arrhenius fits to the con-
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ductance. The discrepancy appears to be resolvable by considering a more detailed

theory of conductance that takes into account the role of disorder in transport. This

suggests that c may provide a more direct measurement of the true bulk gap energy

than transport.

By integrating c/T over temperature, we were also able to determine the entropy

of the 2DEG up to a constant of integration, S0. Our results are in striking agreement

with the entropy according to thermopower measurements by the Eisenstein group.

This provides encouraging evidence that both experiments are correctly measuring

the entropy of the 2DEG.

8.2 Future Work

8.2.1 Mapping out c in the 5/2 FQH

The logical next step for the specific heat experiment is to perform the measure-

ments as a function of temperature and filling factor near 5/2. It may be possible

to reach lower electron temperatures through improved filtering and heatsinking.

Measurement setup D (presented in Chapter 4) was not used for SLL specific heat

measurements, and promises a significant enhancement in SNR. One could take ad-

vantage of that to use a smaller excitation, which would be required to reach lower

temperature and obtain more accurate results with a smaller ratio ∆T/T .

8.2.2 Adiabatic cooling

The initial motivation for the experiments described in this thesis was to ob-

serve adiabatic cooling, rather than specific heat. Having measured the thermal-

ization time constant (∼ 1µs) and specific heat of the 2DEG in the second level,

in appendix D we present a calculation of the expected adiabatic cooling due to

non-Abelian anyons. At and above 50 mK, the signal would be far too small to

detect, but the experiment may nonetheless be viable in the few mK temperature

regime in a device with the appropriate geometry.

8.2.3 Thermopower in the Corbino geometry

Having demonstrated successful fabrication of a Corbino geometry device that

exhibits the ν = 5/2 FQHE, it would be interesting to continue our fabrication
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efforts to develop a device suitable for thermopower studies. In appendix E, we

present some preliminary investigations of thermopower using in situ Joule heat-

ing to create the thermal gradient, as well as other phenomena with very similar

qualitative signatures. These experiments are somewhat difficult to interpret and

disentangle, requiring more systematic study to obtain meaningful results.

8.3 Final words

This thesis has made a strong case as to why the entropy of a 2DEG is worth

measuring, demonstrated the usefulness the power of the Corbino geometry, and

provided a blueprint and inspiration for future measurements. Whether by con-

tinuing along the path of measuring specific heat, or by implementing some of the

other proposed experiments to measure entropy, moving beyond charge transport

can provide new insights into the exotic physics of the fractional quantum Hall

regime.
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Appendix A

Samples

A.1 Corbino geometry devices

All samples used in this thesis were GaAs/AlGaAs heterostructures grown by

molecular beam epitaxy (MBE) at either Princeton University or Sandia National

Laboratories. The Corbino devices have an inner contact radius r1 = 0.25 mm,

outer contact inner radius r2 = 1.0 mm and outer contact outer radius r3 = 1.5 mm.

Fabrication details are described in reference [3]. Fabrication of CB01 and CB05

was carried out by Simon Bilodeau and Keyan Bennaceur respectively.

Table A.1: Samples used in this thesis

Name Wafer Grown at ne (cm−2) µ (cm2/V · s) QW width (nm)

CB01 VA142 Sandia 4.6× 1011 1.0× 106 30
CB05 3.11.10.2 Princeton 3.0× 1011 2.5× 107 30
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A.2 Hall Bar Device HB01

A gated Hall bar device was used for some experiments described in Appendix E.

This fabrication of the device at Sandia national laboratories was previously de-

scribed in reference [97], and a representative photograph is reproduced in Fig-

ure A.1.

Figure A.1: Photograph of a gated Hall bar, similar to the one used in Appendix E.
Reproduced from reference [97].
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Wiring Diagram
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Appendix B. Wiring Diagram

Figure B.1: Sample wiring schematic and pinout. Figure reproduced with permis-
sion from [8].
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Appendix C

Geometric correction factor for

the Corbino geometry

In our conductance thermometry scheme, we infer an apparent (small) temper-

ature change using the equation

∆Tapparent =

(
dG

dT

)−1

×∆G, (C.1)

where ∆G is the total conductance across the device, and dG/dT is found from

the slope of G(T ) measured at low excitation power. However, as discussed in

Chapter 6, the temperature change due to self-heating in the device is non-uniform,

due to the non-constant current density in the Corbino geometry. More power is

dissipated per unit area close to the centre contact than at the outer edge, resulting

in a higher temperature. Additionally, heat escapes either to the phonon bath

throughout the sample, or only to the contacts in the case of electron diffusion. The

very different temperature profiles for these two cases are shown in Figure 6.5. The

apparent temperature inferred from ∆G is thus not simply the mean temperature

of the device, but rather the average weighted appropriately to account for the

contribution to G at each radial position.

C.1 Integral for apparent temperature

In general, a small change in conductance is related to a small change in resis-

tance by the relation

∆G =
1

R + ∆R
− 1

R
∼ −∆R

R2
. (C.2)
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Using this approximation, we can rewrite equation C.1 in terms of resistance as

∆Tapparent =

(
dR

dT

)−1

∆R. (C.3)

Substituting in the integral of resistivity for ∆R (similar to Equation 5.4), and

relating it to ∆T (r), we obtain

∆Tapparent =

(
dR

dT

)−1 ∫ r2

r1

∂ρ

∂T

∆T (r)

2πr
dr. (C.4)

Applying the usual relation between ρ and R (Equation 5.4), we find

∆Tapparent =
1

log(r2/r1)

∫ r2

r1

∆T (r)

r
dr. (C.5)

In other words, Tapparent is given by a weighted average of ∆T (r) where the

weights are simply proportional to 1/r.

C.2 Diffusion case

Inserting the temperature profile for diffusion into equation C.5, we obtain

∆Tapparent =
P

4πκwf log2(r2/r1)

∫ r2

r1

log(r/r1) log(r2/r)

r
dr, (C.6)

which can be solved analytically. The result, after rearranging and rewriting in

terms of κwf , is given by

Kapparent ≡
P

∆Tapparent
= 12κwf , (C.7)

which is independent of r2 and r1.

C.3 Phonon emission case

In the case of cooling by phonon emission, the relevant integral is

∆Tapparent =
P

2πκe−ph log2(r2/r1)

∫ r2

r1

dr

r3
, (C.8)
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and, with K ≡ κe−ph × A, we obtain

Kapparent =

(
2r2r1 log (r2/r1)

r2
2 − r2

1

)2

×K. (C.9)

For our devices where r2/r1 = 4, we find K = 1.83Kapparent.
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Appendix D

Predicted signal for adiabatic

cooling

One of the initial goals of this thesis project was to observe adiabatic cooling

(described in Chapter 3), using either a secondary induction coil, or a backgate to

modulate the quasiparticle density and the conductivity of the sample as a ther-

mometer. Using the values of τ and c that we have measured at ν = 5/2, we can

now revisit the practicality of adiabatic cooling using a gate to induce a change in

the quasiparticle density. The temperature change in adiabatic cooling is given by

∆T = −T
C

∂S
∂Nq

∆Nq, (D.1)

where ∆Nq is the change in the total number of quasiparticles in the sample. If we

consider only the contribution of the non-Abelian entropy to S, it implies that

∆TNA = −kbT ln d

C
∆Nq. (D.2)

Equivalently, we can calculate the total heat absorbed due to adiabatic cooling,

which is simply given by

QNA = −kbT∆Nq ln d. (D.3)

The above equations assume that the 2DEG is completely thermally isolated. How-

ever, we have shown in this thesis that the 2DEG thermalizes to the phonon bath

on a timescale, τ , of a few microseconds at 50 mK. Therefore, it is useful to consider

the cooling power

Q̇NA = −kbT
∂Nq

∂t
ln d, (D.4)
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where ∂Nq
∂t

is the rate of change of quasiparticle number in the sample. The maximum

temperature change achievable by continuously adding quasiparticles at a constant

rate is then given by

∆Tmax = −kbTτ ln d

C

∂Nq

∂t
. (D.5)

However, the process of adding quasiparticles also dissipates heat into the 2DEG.

As an estimate, we can use the Joule heating power, given by

P = R

(
q
∂Nq

∂t

)2

, (D.6)

where R is the resistance of the device and q is the quasiparticle charge. The temper-

ature change and cooling/heating power due to both the adiabatic cooling and Joule

heating effects of adding quasiparticles are calculated and plotted in Figure D.1, for

parameters based on the CB05 Corbino device and the data presented in Chap-

ter 7. The non-Abelian contribution to adiabatic cooling only outcompetes Joule

heating for a very slow rate of adding quasiparticles of less than 150 quasiparticles

per microsecond into the entire 3 mm2 device. The resulting cooling power is only

a fraction of a femtowatt, and due to the heat leak to the phonons results in a

temperature change of less than a microkelvin. This is well below the threshold of

detectability via the conductance thermometry techniques discussed in this thesis

(at T = 50 mK).

The adiabatic cooling signal may be enhanced by choosing a device with a ratio

r2/r1 closer to 1, thus reducing R and therefore the Joule heating power. One would

also expect the experiment to become more viable at lower temperature, since c is

expected to decrease, which would result in a larger ∆T for the same Q̇. At the

same time, τ increases, providing better better thermalization and the opportunity

to do the experiment more slowly. However, ∆Tmax and P are proportional to

T in equations D.4 and D.5, and R diverges in a well-developed QH state, which

means more power is required to move quasiparticles in or out of the 2DEG. The

specific interplay between these various factors would determine whether there is

any temperature range where the adiabatic cooling experiment could lead to an

observable signal.
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Figure D.1: Estimated magnitude of the non-Abelian contribution to adiabatic cool-
ing effect as a function of the rate at which quasiparticles are added to the sample.
The blue curve is an estimate of the heat generated by adding the quasiparticles,
while the green line is the non-Abelian contribution to adiabatic cooling. Both
curves can be read as power using the lefthand axis, or temperature change using
the righthand axis. Parameters used in the calculation are: R = 1 MΩ, τ = 2µs,
T = 50 mK, ne = 3× 1011 cm−2, A = 0.03 cm2 and C = 0.01kbNe.
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Appendix E

Rectification and thermopower

E.1 Introduction

In general, a nonlinear effect that results in an I-V curve that is not antisym-

metric around zero (or equivalently dI/dV not symmetric about zero) is known as

rectification and will result in a DC voltage appearing when an AC voltage is applied

to the sample. In this chapter, we will discuss a series of non-linear effects which

appear qualitatively similar to one another - they all manifest as rectification with

a sign that follows dσxx/dν as the filling factor changes. The first such phenomenon

is self-gating in a Hall bar, for which we present experimental results that are in

excellent agreement with a simple theoretical calculation. The second phenomenon

we discuss is rectification due to the self magnetic field of a Corbino device, but our

calculation shows that the effect is too tiny to observe. The rectification signal we

actually observe in a Corbino device is orders of magnitude larger than expected.

We next turn to a third mechanism: thermopower due to non-uniform self-heating

of the 2DEG. Although this, or some closely related phenomenon, may explain the

observed rectification in the Corbino device, further experiments and analysis are

required to understand the data. Finally, we show similar oscillations in the charge

on a gate near a 2DEG exposed to a modulated high frequency RF field, which may

be a measurement of ∂µ/∂T , but the unexpectedly large signal magnitude requires

further investigation.
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E.2 Self-gating

E.2.1 Theory

The electron density in a 2DEG can be changed by applying a voltage difference

between it and a nearby gate. Typically, this is accomplished by grounding the

2DEG and using a voltage source to bias the gate. However, if the gate is grounded,

a voltage applied on the 2DEG changes the density in the same way. Since the

sample and lead wiring have finite resistance, by Ohm’s Law a current, i, passing

through the sample will result in a voltage, Vgs between the gate and 2DEG. This will

lead to an effect that has been referred to as “self-gating” in quantum dots [98] and

carbon nanotubes [99], and is related to the concept of channel length modulation

in electrical engineering. Here, we show how it manifests specifically in a gated Hall

bar in a magnetic field. We consider the 2DEG and gate as two plates of a parallel

plate capacitor with capacitance C, area A and electron density n0. A cartoon of

the basic arrangement is shown in Figure E.1.

Figure E.1: Cartoon of a gated Hall bar, showing the arrangement in which self-
gating may be observed.

The change in electronic density in the 2DEG, ∆n, and the voltage between

gate and 2DEG, Vgs, are then related by the equation ∆n = CVgs/eA. We estimate

the average voltage on the sample to be Vgs ' 1
2
R2pti, with R2pt being the total

two point resistance (including leads). If i is an AC current given by i0 sinωt, the

magnitude of the density modulation is

∆n =
CR2pt

2eA
i0 (E.1)
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and the voltage response is, to first order,

Vxx = i0 sin(ωt)

(
Rxx(n0) +

∂Rxx

∂n

CR2pt

2eA
i0 sin(ωt)

)
. (E.2)

Multiplication of the two sinusoidal terms leads to the expression

Vxx = i0R(n0) sin(ωt) +
1

4
i0
∂Rxx

∂n

C

eA
R2pt(1− cos(2ωt)), (E.3)

where the second term represents rectification, which could be observed at DC or

the second harmonic. In the quantum Hall regime, Rxx is a function of filling factor,

ν = nh/eB, where B is the magnetic field. Therefore, the partial derivatives of Rxx

are related by
∂Rxx

∂n
= −B

n

∂Rxx

∂B
, (E.4)

and we can write the DC and second harmonic signals as

VDC,2ω =
BCR2pt

4nA

∂Rxx

∂B
i20, (E.5)

where the 2ω signal is in phase with − cos(2ωt). Thus, the expected signature of

self-gating is a DC or second harmonic signal that oscillates with B, following the

derivative of Rxx.

E.2.2 Results and discussion

A demonstration of self-gating behaviour is shown in Figure E.2. The sample

is a Hall bar with gate-2DEG overlap area A = 0.62 mm2 (determined from pho-

tographs of the device), n0 = 2.9 × 1011 cm−2, mobility 1.1 × 106 cm2/V · s and

depth d = 100 nm. The experiment was performed in a dilution refrigerator at base

temperature of 18 mK. Figure E.2a shows Rxx measured with a 200 nA sinusoidal

excitation current at 6.5 Hz. Well-formed SdH oscillations and even IQHE min-

ima are clearly visible. At the same time, igate (the current between the gate and

ground) was measured using a current preamplifier, as shown in Figure E.2b. Since

the 2DEG and gate form the two plates of a capacitor, igate is equal to the current

entering and leaving the 2DEG, so we can directly calculate from it ∆N = i
ω

. The

∼25 pA current at 0 T is primarily due to the 2 kΩ resistors included in the circuit

as part of RC filters, while the upward slope is due to the contribution of the Hall
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Figure E.2: Self-gating phenomenon in a gated Hall bar. a) Rxx measured with
a 200 nA current. b) Current measured between the gate and ground, indicating
that the 200 nA bias on the 2DEG is large enough to change the electronic density
in the 2DEG. c) Second harmonic signal (blue) and model (green). The model is
calculated from the data in panels (a) and (b) as described in the text.

effect to R2pt. Oscillations are due to Rxx, as well as the timescale to move charge

into the bulk of the 2DEG, given by τ ' C/σxx, which diverges in well-formed IQHE
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minima such as ν = 12. Since we have the measurement of igate, we can use the

equation

VDC,2ω =
Bigate
2nAeω

∂Rxx

∂B
i0 (E.6)

instead of equation E.5 to calculate the expected rectification signal. As shown in

Figure E.2c, this calculation closely follows the actual measurement of V2ω. Due to

the large capacitance (thanks to the small separation between the 2DEG and gate)

and sharp features in the magnetoresistance of high mobility samples, self-gating

effects are strong even for a moderate excitation of 200 nA.

It should be noted that self-gating modifies the current flow on the basis of

Vgs, rather than the physical direction of i within the device. Its directionality as a

rectifier is set by choosing which terminal is grounded (or set to the same potential

as the gate). This is quite different from many other rectifiers, such as diodes, which

rely on physical properties of the device itself to choose an easy and hard direction.

Although self-gating does not itself give access to any particularly deep physics,

it is experimentally relevant in that it interferes with other non-linear effects that one

might attempt to study. Any non-linear transport experiment where the sample is

proximate to a grounded conductor must take self-gating into account as a potential

confounding effect.

E.3 Self-magnetic field in a Corbino disk

A variation of self-gating is possible in the Corbino geometry, and was first

predicted by Kleinman and Schawlow in 1960 [51] for high-mobility 3D materials

and observed experimentally in bulk InSb by Green in 1961 [100]. As shown in

Figure E.3a, current flows in a spiral path in a Corbino device subjected to a mag-

netic field B and the tangential component of the current in turn creates a small

additional magnetic field ∆B. Thus, much like self-gating, a strong current slightly

changes the filling factor in the 2DEG. The radial voltage response vr, to a drive

current ir is

vr = iR = (ir sin(ωt))(R0 +
∂R

∂B
∆B sin(ωt)) (E.7)

where ∆B sin(ωt) is the magnetic field caused by the tangential component of

the current and R is the resistance between the two contacts.

For a simple order-of-magnitude estimate of the rectified signal, we assume
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Figure E.3: (a) Cartoon of filling factor modulation due to current in the Corbino
geometry. In a magnetic field, B, a voltage applied between the two contacts drives
a current in a spiral path. The tangential component of the current creates a field
∆B(r), which in turn affect ν and σ. (b) Estimated rectified voltage signal due to
the self-magnetic field for v0 = 10 mV and r2 = 1 mm, calculated from Rxx and Rxy

data according to equation E.8. The estimated ∆B is shown in the inset.

that all of the tangential current flows at the outer rim of the Corbino, and is given

by iφ = σxyvr. We also assume that the entire device experiences the field which

that current would generate at the center of the device, given by ∆B =
µ0iφ
2r2

. This

simple model, although it is a coarse approximation, provides an upper bound on

the possible rectification effect. The rectified part of Equation E.7 can be written

for an excitation v0 sin(ωt) as

VDC, 2ω =
µ0σxyv

2
0

2r2σxx

∂σxx
∂B

, (E.8)
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where µ0 is the magnetic constant, and r2 is the outer radius of the Corbino disk.

Using Rxx and Rxy measured in the Hall bar device shown in Figure E.2a, we

have calculated σxx and σxy for a hypothetical Corbino sample. In Figure E.3b,

equation E.8 is plotted for some reasonable experimental parameters (r2 = 1 mm,

v0 = 10 mV), with the estimated magnetic field ∆B in the inset. Other than the

peak near 0 T, the expected signal is less than ∼5 nV, which is 106 times smaller

than v0. While such a small signal may be detectable, it is far smaller than the

rectification signal actually observed in our sample, as will be discussed in the results

part of the next section.

E.4 Thermopower in the Corbino geometry

Thermopower can be understood as rectification if we consider the (electrical)

heater and the sample together as a single device. A typical thermopower experiment

may be considered as a four terminal measurement, as shown in Figure E.4. A local

heater, driven by I+ and I- leads, creates a temperature differential, ∆T , across

the sample. The resulting thermovoltage, Vtp is then measured using V+ and V-

contacts. Since the direction of the heater current does not affect the orientation

of ∆T , the polarity of Vtp is also independent of the current direction. The I-V

curve where I is the heater current and V is Vtp is completely symmetric. Thus,

thermopower may be classified as a four terminal rectification effect, and indeed it is

common to drive the heater at a frequency ω and detect Vtp at 2ω [40,43,101,102].

In the two-terminal Corbino geometry, Joule heating leads to a radial thermal

gradient due to the higher current density near the center of the device. In fact, the

heating power per unit area varies as 1/r2, which can lead to a substantial thermal

gradient if the contacts are not able to efficiently remove heat from the 2DEG.

Since the heating power is independent of current direction, and the direction of

the thermal gradient is set by the physical geometry of the sample, the resulting

thermovoltage has the same sign regardless of the current direction. Therefore,

thermopower could potentially lead to a rectification signal in Corbino samples.
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Figure E.4: Thermopower as rectification in four terminal and two terminal config-
urations. a) Four terminal configuration, where an AC input current to a heater
results in a thermal gradient and DC voltage along the sample. b) A two terminal
measurement of an assymetrical sample (a slice of a Corbino disk, in this case),
where the gradient in current density creates a thermal gradient and results in a DC
thermovoltage.

E.4.1 Mott formula for thermopower in the Corbino geom-

etry

In the presence of both an electric field and a thermal gradient, the diffusion

current in a conductor is given by

j = σ̂E + λ̂∇T, (E.9)

where σ̂ is the electrical conductivity tensor and λ̂ is the thermoelectric conductivity

tensor. Since we are interested in the thermopower with no current flowing, we set

j = 0 and use the symmetry of our particular geometry to simplify the equation.

In the Corbino case, there are no steady state tangential electric fields ( ~E = [E, 0])

and the thermal gradient we impose is purely radial (∇θT = 0). Therefore, we have

Srr =
E

∇rT
=
λrr
σrr

. (E.10)

Using the Chester-Thellung-Kubo-Greenwood formalism [103,104], we can write

down both σ̂ and λ̂ as integrals over energy as follows:

σ̂ = −
∫ ∞

0

(
∂f

∂ε

)
σ̂0dε (E.11)
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and

λ̂ = − 1

eT

∫ ∞

0

(
∂f

∂ε

)
(ε− µ) σ̂0dε (E.12)

and therefore

Srr =

∫∞
0

(
∂f
∂ε

)
(ε− µ)σ0dε

eT
∫∞

0

(
∂f
∂ε

)
σ0dε

(E.13)

where we define σ0 = σrr(T = 0) for notational convenience. In the low temperature

limit, we can apply a Sommerfeld expansion to equation E.13 to obtain

Srr = −π
2k2
B

3eσ0

(
dσ0

dε

)

ε=εf

. (E.14)

In order to directly calculate Srr from conductance data, we use the relations between

ν, ε, ne and B to write this as

Srr = −L0eB

εfσ0

dσ0

dB
(E.15)

where L0 = π2k2
b/3e

2 is the Lorenz number. For a Corbino device being self-heated

by a voltage bias v0, we would therefore expect a signal like

Vtp = Srr∆T = −L0eB

εfσ0

dσ0

dB
∆T (E.16)

with

∆T (v0, B) = γ(B)v2
0, (E.17)

where γ(B) is some function such that ∆T (v0, B) = γ(B)v2
0. To determine γ(B),

one would need a detailed model of heat flow in the device, especially near the ohmic

contacts to the 2DEG.

E.4.2 Experimental design

Figure E.5 shows the measurement scheme for the basic Corbino rectification

measurement. A high frequency AC voltage is capacitively coupled to the sample,

which is then measured by a DC coupled preamplifier. This unusual setup allows

us to both apply a voltage bias and measure the open-circuit voltage (at different

frequencies), unlike the more conventional circuits discussed in Chapter 4 that apply

voltage and measure current and vice versa. This configuration is ideal for measuring

thermopower, where we are interested in measuring the open circuit voltage, but
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Figure E.5: Simplified schematic diagram for a rectification measurement in the
Corbino geometry.

applying a constant current to the Corbino is impractical due to its extremely high

resistance in quantum Hall states.

In order to improve the signal-to-noise-ratio and avoid DC drift, the AC voltage

is also modulated at 6.5 Hz, and the lock-in amplifier detects at the modulating

frequency rather than DC. However, the basic result does hold for continuous-wave

AC excitation (or even excitation by white noise) and purely DC detection. The

conductance of the sample could also be measured simultaneously by adding another

AC voltage at a different frequency and measuring the current between the sample

and ground using a second lock-in amplifier.

E.4.3 Results with DC detection

In the most basic rectification measurement, we measured the DC response to

an AC excitation. In this case, an AC voltage of 0.5 mV at 200 kHz is applied

across the sample. A preamplifier with a low pass filter (0.3 Hz, 12 dB) and gain of

1000 is also connected to measure the voltage across the sample. The output of the

preamplifier is then connected to a DC voltmeter. The result of this measurement is

plotted as the blue line in Figure E.6. For comparison, we also plot the conductance,

measured on a separate field sweep using a conventional lock-in technique.

As the magnetic field increases, σ decreases and begins to oscillate, as is typical

for the SdH and IQH regime. Meanwhile, VDC oscillates, rapidly switching from

negative to positive as the field passes through each minimum of σ. These sawtooth-

like oscillations grow in amplitude with increasing magnetic field. Interestingly, a

substantial portion of the DC response is present even with no applied voltage, as

shown in Figure E.7. This suggests that, at least in this measurement configuration,
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Figure E.6: Rectification signal in the Corbino geometry. A constant offset of 19 µV
has been subtracted from VDC , such that VDC is zero at B = 0 T.

a substantial stray voltage (nearly equivalent to 500µV at a single frequency) is

coupled to the sample. This is probably due to the length of the wires, and the

absence of a room temperature resistor in the circuit to shunt pickup voltages to

ground.

E.4.4 Possible explanations in terms of filling factor shifts

Self-gating

The behaviour of VDC in Figure E.6 looks strikingly similar to rectification due

to self-gating, discussed earlier in this chapter. Although sample CB01 is not in-

tentionally gated, a nearby ground plane could nonetheless act as a gate and cause

rectification. We can calculate the approximate capacitance between the 2DEG and

the ground plane and see if it is consistent with any known features in the sam-

ple. The equivalent of Equation 1.5 for constant voltage Vin (rather than constant
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Figure E.7: DC voltage across the Corbino device both with and without an applied
AC voltage. Here, the offset has not been subtracted, but is arbitrary (it can be
adjusted using a screw on the preamplifier).

current) in a Corbino device is

VDC = −CV
2
inB

2eAnR

∂R

∂B
. (E.18)

The value of C required to make this calculation overlap with the data over the range

from 0.4 to 0.5 T is roughly 1.5 nF, as shown in Figure E.8a. The capacitance would

also have to be field dependent, monotonically increasing with increasing magnetic

field, in order to fully capture the behaviour of the data. From this calculation,

it appears that the rectification is roughly consistent with self-gating between the

2DEG and the surface of the sample. However, this would require the presence of a

conducting layer at the surface with fairly high mobility that is connected to only

one of the contacts. Since the drive frequency was 200 kHz, we can conclude that

resistance of the surface layer would have to be less than 500 Ω in order for the RC

time constant to be sufficiently short enough. It seems unlikely that such a con-

ductive layer could “accidentally” be connected to only one contact and completely

disconnected from the other, which would be necessary since parallel conduction be-
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tween the contacts is seen in this device. One possibility is metallic contamination

on the top surface of the sample, perhaps due to excess indium solder extending be-

yond the central contact area 1. However, it would not explain the field dependence;

the dielectric constant for GaAs does not vary strongly with magnetic field. This

explanation could be checked by repeating the experiment with multiple samples to

check for consistency and any dependence on 2DEG depth and design. Qualitatively

similar results were observed in two other samples, but systematic experiments have

not yet been performed.
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Figure E.8: (A) Experimental VDC (blue) and calculated self-gating effect assuming
a 1.5 nF capacitance to ground. (B) Modelled rectification due to self magnetic field.
Note the difference in scale - the prediction is five orders of magnitude smaller than
the data in panel A.

Self-magnetic field

As discussed in section E.3, the current in a Corbino device travels in a spiral

path, and its tangential component generates a small magnetic field that could

1Note that the bottom surface of the sample is about 0.7 mm away from the 2DEG, yielding a
capacitance of just 0.5 pF
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change the conductance of the sample by slightly shifting ν. The result of this

calculation based on equation E.8 using the conductance data from CB01 is shown

in Figure E.8b. The effect is far too small to account for the observed magnitude

of VDC . Additionally, the model fails to capture the shape of the envelope of the

rectification data, as well as having the opposite sign.

E.4.5 Modeling as thermopower
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Figure E.9: Experimental rectification data (blue) overlaid with calculated ther-
movoltage assuming ∆T = 0.8 × B [K/T]. b) Assumed ∆T dependence for panel
a.

In order to better understand whether VDC is a thermovoltage due to self-

heating, we consider the possibility that ∆T is field-dependent. In Figure E.9a, VDC

is plotted again, along with the thermovoltage calculated according to Equation E.16

with ∆T = 0.8× B [K/T] as shown in panel b. The form of ∆T (B) was chosen to

capture the observed envelope shape across a wide range of magnetic field, and is
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not based on any physical model. It would suggest that the self-heating of the 2DEG

is substantial, with ∆T > T0. The increase of ∆T with increasing magnetic field

would imply that the 2DEG is less able to thermalize as the field increases, which

is consistent with the increasing magnetoresistance of the 2DEG (and, perhaps,

contacts) with increasing magnetic field.

E.5 Measuring entropy via ∂µ
∂T

E.5.1 Experimental Design

As another approach to measuring the entropy of the 2DEG, we tested a vari-

ation of a scheme proposed by Cooper and Stern [38] and previously carried out

experimentally at high temperature (at and above 2.4 K) by Kuntsevich et. al. [44],

and more recently using a quantum dot charge sensor by Hartman et. al. [105] . The

basic concept, as discussed in Chapter 3 of this thesis, is to measure the change in

chemical potential of the 2DEG as temperature changes, and then use the Maxwell

relation (
∂µ

∂T

)

N

= −
(
∂S

∂N

)

T

(E.19)

to obtain the entropy. A sketch of our version of the experiment is shown in Fig-

ure E.10. The sample, the same gated Hall bar used in the self-gating experiment

described in section E.2, is placed inside a small external RF coil, which is perpen-

dicular to the magnetic field. This coil arrangement is similar to the setup used for

resistively detected nuclear magnetic resonance experiments (RDNMR), but rather

than tuning to a specific resonance frequency we use some other arbitrary frequency

(fRF = 100 MHz) to induce non-resonant heating. The RF field is modulated at a

much lower frequency fmod = 500 Hz, with the result that the electron temperature

includes a time-varying component of the form ∆T sin(ωmodt)
2.

As the temperature of the 2DEG changes by an amount ∆T , so too does its

chemical potential by an amount ∆µ = ∆T ∂µ
∂T

. Because the 2DEG and its top

gate form a parallel plate capacitor as shown in Figure E.10, ∆µ can be inferred by

measuring the electrical current flowing in and out of the top gate. The gate current

2The actual modulation used here is such that the drive voltage is given by
v = 1

2 (1 + sin(ωmodt))× sin(ωRF t). Since the heating is proportional to power, not voltage, there
will be additional higher order terms, which we neglect since the measurement is performed with
a lock-in tuned to ωmod.
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Figure E.10: a) Experimental setup to heat the sample via non-resonant heating and
detect the resulting gate current. b) Simplified band diagram showing the capacitor
formed by the gate and 2DEG.

igate is given by

igate =
1

ωmodC

∂µ

∂T
∆T cos(ωmodt). (E.20)

In the experimental arrangement reported here, we do not strictly maintain a con-

stant number of electrons in the sample. As proposed by Cooper and Stern [38],

one could instead measure the current between the sample and ground, and use a

feedback loop to apply a voltage to the sample to null that current. The required

feedback voltage would then be precisely equal to µ with ∆N = 0.

E.5.2 Results and Discussion

The experiment was tested in the SdH and IQHE regime with the coil driven

at -25 dBm. Simultaneously, a 10 nA AC current at 17 Hz was used to perform a

standard Rxx and Rxy measurement. The resulting measurements of Rxx and Rxy are

shown in Figure E.11a, while igate is shown in Figure E.11b (on the lefthand axis).

The righthand axis shows ∆µ calculated using C = 0.7 nF, as determined from the

self-gating dataset (which also agrees with the known geometry of the sample). The

shape of the signal is quite different from the shape of dRxx/dB and the self-gating

signal discussed earlier in this chapter, suggesting that this is not a variation of the

same phenomenon. Instead, the qualitative behaviour of igate is roughly as expected

for ∂s/∂n: a slightly saw toothed oscillation with zero crossings at the minimum

and maximum of Rxx, appearing primarily in the out-of-phase (imaginary) part of

the signal. For comparison to a simple model, Figure E.12 shows S and ∂S/∂N at

T = 100 mK for n = 2.9× 1011 cm−2 using the low-temperature approximation

S =
π2Tg(εF )

3
(E.21)
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Figure E.11: Measurement of igate due to non-resonant RF heating of the 2DEG,
measured in a Hall bar configuration. a) Rxx and Rxy measured using a 10 nA
excitation and standard lock-in technique at 17 Hz. b) Current between the gate
and ground measured at ωmod=500 Hz. The mixing chamber temperature was 70 mK
during the experiment.

and Gaussian-broadened Landau levels with Γ = 1 K (FWHM = 1.6 K). The qualita-

tive differences in the shape of igate and the calculation of ∂S/∂N could be explained

by differences in the broadening function, if the Gaussian model is not a good ap-

proximation of the real LL shape in this sample. However, the experimental data is

also more than an order of magnitude larger than expected. The unexpectedly large

signal size could only be explained if both T and ∆T are close to 0.5 K, implying

that the RF heating of the 2DEG was much stronger than anticipated based on

previous studies that used similar RF power levels and the same apparatus (albeit

at a much lower frequency, around 50 MHz, and in an ungated sample with much

higher mobility) [8]. Further investigation is required to determine whether that

explanation holds, or whether there is some origin for this striking result.
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Figure E.12: Numerical calculations of entropy for Gaussian-broadened LLs with
ne = 2.9 × 1011 cm−2, Γ = 1 K and T = 100 mK. a) Entropy per electron. b)
∂S/∂N for the same parameters.

E.6 Summary

In this chapter, we discussed several different experiments and phenomena that

all share a common qualitative signature. In the case of self-gating, theory and

experiment are in excellent agreement. The closely related self-magnetic field effect

in a Corbino device is predicted to be too small to observe experimentally. Instead,

we observed a much larger rectification signal in an actual Corbino device. The

signal is somewhat consistent with thermopower, but the overall field dependence

and signal strength are difficult to understand. In the absence of a detailed thermal

model for the 2DEG, its substrate and contacts, it is challenging to properly interpret

the results or extract meaningful thermopower results. Finally we discussed another

possible way to measure the entropy of the 2DEG, by using a gate as a charge sensor

while varying the 2DEG temperature using non-resonant RF heating. Again, the

shape of the signal is extremely promising, but the signal strength is much larger

than expected. Further systematic work will be needed to disentangle the various
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physical phenomena that share remarkably common signatures.
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Specific heat at high filling factors

Besides the results for τ , K and c in the SLL described in Chapter 7, I also

performed measurements at higher filling factors (i.e. the IQH regime). These

experiments were actually performed before the SLL ones, using a slightly different

(and therefore less refined) technique. In this appendix, we will first calculate the

integral of c over a Landau Level, and then compare it to our experimental result.

F.1 Integral of specific heat over a filling factor

in magnetic field

Assume that the density of states contribution of a single spin-split Landau

level can be described by the equation

g(ε, Ec) =
g0Ec

2
· h(ε− EN), (F.1)

where g0 = m∗/π~2 is the zero field density of states, Ec = ~ωc = eB/m∗, EN =
1
2
(N + 1/2)Ec and h(ε′) = h(−ε′) is a symmetric broadening function normalized

such that ∫ ∞

−∞
h(ε′)dε′ = 1. (F.2)

We now consider the integral of c, the specific heat per unit area, over a magnetic

field range spanning from filling factor ν = N + 1 to ν = N . For simplicity, we will

perform the integral over Ec. We assume the Landau levels are well-separated,

and we only see contributions due to the single Landau level we are considering.

Therefore, we take the integrations limits to ±∞, but only include the contribution
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of the Landau level centred at EN , as follows:

∫ ∞

−∞
c(T,Ec)dEc =

∫ ∞

−∞

du

dT
dEc

=

∫ ∞

−∞
dEc

d

dT

∫ ∞

−∞
εf(ε, µ, T )g(ε, εc)dε

'
∫ ∞

−∞
dEc

∫ ∞

−∞
dε

(
ε
∂f(ε)

∂T

g0

2
· Ec · h(ε− EN)

)
.

Next, we use the relation between EN and Ec to eliminate Ec from the integral, and

at the same time use the symmetry of h to switch ε and EN , yielding

∫ ∞

−∞
c(T,Ec)dεc =

4g0

2(N + 1/2)2

∫ ∞

−∞
dEN

∫ ∞

−∞
dε

(
ε · ∂f(ε)

∂T
· EN · h(ε− EN)

)
,

which can be split into two terms by substituting EN = (EN − ε) + ε.

∫ ∞

−∞
c(T,Ec)dεc =

2g0

(N + 1/2)2

∫ ∞

−∞
dEN

∫ ∞

−∞
dε

(
ε · ∂f(ε)

∂T
· (EN − ε) · h(EN − ε)

)

+
2g0

(N + 1/2)2

∫ ∞

−∞
dEN

∫ ∞

−∞
dε

(
ε2
∂f(ε)

∂T
· h(EN − ε)

)
.

Each term can now be written as the integral of a convolution of two functions.

The first term is

2g0

(N + 1/2)2

∫ ∞

−∞
dEN

((
EN

∂f(EN)

∂T

)
∗ (ENh(EN))

)
(EN)

=
2g0

(N + 1/2)2

(∫ ∞

−∞
dEN

(
EN

∂f(EN)

∂T

))
·
(∫ ∞

−∞
dEN (ENh(EN))

)

= 0,

since ENh(EN) is symmetric. The integral of C is then given by the second term

only, which is

2g0

(N + 1/2)2

∫ ∞

−∞
dEN

((
E2
N

∂f(EN)

∂T

)
∗ (h(EN))

)
(EN)

=
2g0

(N + 1/2)2

(∫ ∞

−∞
dEN

(
E2
N

∂f(EN)

∂T

))
·
(∫ ∞

−∞
dENh(EN)

)

=
2g0

(N + 1/2)2
·
(

2π2

3
Efk

2
bT

)
· 1,
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and, using the fact that g0 = ne/Ef ,we have

∫ ∞

−∞
c(T,Ec)dEc =

ne
(N + 1/2)2

4π2

3
k2
bT.

Finally, making use of the definition of Ec in terms of B, we obtain

∫ Bν=i

Bν=i+1

c(T,B)dB =
4π2m∗

3(N − 1/2)2e~
kbT. (F.3)

F.2 Experimental results

Specific heat measurements at high filling factors were performed using mea-

surement setup B (as described in Section 4.4.2), with a variation of the technique

described in Chapter 7. Rather than using a pure unipolar square wave to measure

both K and τ , the two measurements were performed separately. First, K was

found by measuring di/dv vs. VDC . Then, τ was measured by continuing to apply

a small voltage vlow to the sample after turning off the strong heating voltage vhigh.

The results of the experiment are shown in Figure F.1. Notably, τ is relatively

constant, while K varies strongly with B, roughly following the trend of G. This

is expected, since, like G, K is dependent on the density of states near the Fermi

energy: the amount of power that the 2DEG can dissipate is directly proportional to

the number of electrons available to interact with the phonon bath. Since τ = C/K,

and both C and K approximately follow the density of states, it follows that τ is

relatively constant.

To compare the experimental results the theoretical prediction of equation F.3,

c was numerically integrated between ν = 11 to ν = 12, yielding a value of 4.4 ×
10−4 [kb · T] per electron. The theoretical result is somewhat smaller, 3.0× 10−4 [kb · T]

per electron. The discrepancy may be due to the presence of strongly interacting

bubble and stripe phases.
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Figure F.1: Measurement of G, K, τ and c at Te = 60 mK in the IQH regime. a)
Conductance versus field, showing IQHE as well bubble-phase features on the left
flank of each minimum (see Chapter 5). b) Thermal relaxation times, τ , which were
measured during cooling (rather than during heating, as in Chapter 7). c) Thermal
conductance, K, measured via di/dv. d) Specific heat c, in units of kb per electron,
calculated by multiplying τ and κ.
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