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ABSTRACT

The discovery of the quantum Hall effect (QHE) in the latter twentieth century sparked

a revolution for condensed matter physics and provided a new universal standard for re-

sistance in metrology. Probing low temperature quantum behaviour of two-dimensional

electron gases (2DEGs) in various semiconductor materials changed our understanding of

particle interactions in low-dimensions. Beyond direct current transport measurements, nu-

merous experimental environments including optical measurements, like Faraday rotation,

continue to provide insights into our quantum world. Both Hall and Faraday effects arise

in the presence of a magnetic field from the Lorentz force on electrons in the 2DEG. Both

effects were classically defined in the 1800s and provided great technological advances for

electronics and communication. Faraday rotation manifests itself in a wide range of physical

settings from radio waves through interstellar gases to X-ray transmission in metals. Where

the quantum Hall effect and derivative research has opened up pathways for quantum com-

puting, quantized Faraday rotation could support twenty-first century non-reciprocal radio

or microwave control. We have found that high electron mobility in 2DEGs enables giant

single-pass rotation of θmax
F ' 45o ' (0.8 rad) and robust integer quantum Hall states in the

high magnetic field range. This thesis presents background and experiments in the QHE as

well as quantized Faraday rotation. Measurements for both phenomena are presented and a

design for future studies of quantized Faraday rotation is presented. Future research goals of

quantized Faraday measurements include room temperature measurements in high spin-orbit

materials and observation of fractional quantum Faraday effects at low temperatures.
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ABRÉGÉ

La découverte de l’effet Hall quantique (EHQ) à la fin du vingtième siècle a déclenché

une révolution pour la physique de matière condensée et a offert un nouveau standard uni-

versel pour la résistance en métrologie. Sonder le comportement quantique à basse tempéra-

ture de gaz d’électrons bidimensionnels (GEBDs) dans divers matériaux semi-conducteurs

a changé notre compréhension de l’intéraction des particules en basses dimensions. Au-delà

des mesures directes de transport de courant, plusieurs environnements expérimentaux, in-

cluant les mesures optiques comme la rotation Faraday, continuent d’offrir une perspective

dans le monde quantique. Les effets Hall et Faraday se révèlent en la présence d’un champ

magnétique et sont issus de la force Lorentz sur des électrons dans le GEBD. Ces deux effets

ont été définis dans les années 1800, et ont fourni de grandes avancées pour l’électronique

et la communication. La rotation Faraday se manifeste dans une grande gamme de cadres

physiques, commes les ondes radio à travers des gaz interstellaires ou la transmissions de

rayon-X dans les métaux. Alors que l’effet Hall quantique entier et ses recherches dérivées

ont ouvert la voie pour le calculateur quantique, la rotation Faraday quantifiée pourrait faire

avancer la radio non-réciproque ou le contrôle des signaux micro-ondes du 21e siécle. Nous

avons decouvert que la haute mobilité des électrons en GEBDs permet des passages uniques

de rotations de θmax
F ' 45o ' (0.8 rad) et des états Hall quantiques entiers dans la gamme

de hauts champs magnétiques. Cette mémoire présente le contexte et les expérimentations

dans l’EHQ, ainsi que la rotation Faraday quantifiée. Des mesures pour ces deux phénomènes

ainsi qu’un design pour de futures études de la rotation Faraday quantifiée sont présentés.
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Les objectifs prochains de cette recherche incluent des mesures sur des matériaux à haut

couplage spin-orbite, et l’observation de l’effet Faraday quantatique fractionnaire à basses

températures.
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Chapter One

Quantum Hall Effect

The discovery of the quantum Hall effect (QHE) in the later twentieth century has blos-

somed into a popular new field of condensed matter physics. With deep implications for

low-dimensional physics, semiconductor physics, quantum computing, and metrology, QHE

research has been marked by unexpected new experimental discoveries. Klaus von Klitzing,

in his Nobel prize speech of 1985 reminds us that, while semiconductors are electronically

complicated materials, they allow us to measure and comprehend fundamental quantized

figures of the universe [1]. While the states of integer QHE (IQHE) are populated by freely

moving electrons, the states of the fractional QHE (FQHE) are thought to be governed by

electron interactions. Perhaps the most mysterious aspect of the QHE is the apparent for-

mation of the particles known as composite fermions (CFs), which occupy fractional filling

states. In certain fractional states, such as ν = 5/2, these CFs defy both types of parti-

cle statistics, bosonic and fermionic, that modern physics allows. Such states have been

theorised and measured experimentally, however clarity on their nature is still lacking. Un-

derstanding the basis for such phenomena rests upon future investigations and innovative

experimental techniques.

In this chapter, I provide an overview of groundbreaking discoveries and foundational
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Chapter 1. Quantum Hall Effect

concepts of the QHE as the basis for our understanding of quantized Faraday rotation, found

to be an optical analog of the QHE. I provide a brief experimental and theoretical background

followed by a review of experiments I conducted using specialized flip-chip devices for novel

QHE gating.

1.1 Background to the quantum Hall effect

1.1.1 Landau level physics

Figure 1.1 Formation of Landau levels in the QHE. Left: In the magnetic
field B electrons are confined to cyclotron orbit with each energy level known as a
Landau Level (LL) separated by width h̄ωc shown here in energy k space, Right:
From the view of density of states (DOS, commonly labeled g), increasing B causes
increasing separation of energy levels enabling the measurement of distinct LLs.
From Cory Dean’s PhD thesis [2].

Both the IQHE and FQHE states are well described with Landau levels (LLs) in a two-

dimensional (2D) system. Landau levels in the QHE are degenerate energy states directly

proportional to magnetic field strength. In an ideal, disorder-free system in the presence

of a magnetic field B, the electron energy states collapse into quantized circular orbits in

the plane transverse to the B field. These energy states are separated by a well-defined

energy gap h̄ωc, where ωc is the cyclotron frequency. In 3D, electrons can inhabit any state

2



Chapter 1. Quantum Hall Effect

on the quasi-continuous energy spectrum along the z-axis. However, in the 2D limit at

low temperatures, the LLs represent the only energy levels, confined to the x, y plane the

electrons can occupy due to such a large energy gap.

To better understand the integer quantum Hall effect (IQHE) we can begin with the

solution for the Schroedinger equation for an electron confined to 2D,

EN = (N + 1/2)wc (1.1)

where N = 0, 1, 2, ... refers to each Landau level and wc is given by

wc =
eB

m∗
(1.2)

with m∗ the effective mass of the electron. For the GaAs semiconductor wafers used for

the experiments described in this thesis, m∗ = 0.067me. In the absence of a magnetic field,

the density of states (DOS) in 2D is constant as a function of energy. However with a

magnetic field and in the ideal case, the density of states collapses onto a series of highly

degenerate, separated δ-functions corresponding to the LLs. In real samples, the δ-functions

are broadened due to disorder scattering. The width of this broadening is referred to as Γ and

is further discussed in an experimental context in Section 1.2. There are a number of energy

states within each LL given by the magnetic field strength defining the LL degeneracy:

nB =
eB

h
. (1.3)

This formula for the number of states does not include spin degeneracy, which would con-

tribute an additional factor of two. As the magnetic field is increased, as shown in Fig. 1.1,

3



Chapter 1. Quantum Hall Effect

the size of orbits in k-space increases and so does the available space for more electrons as

in Eq. 1.3. At very low temperatures, electrons fill the lowest available energy states. At

low temperatures and low magnetic fields, a large number of LLs will in general be filled. As

the magnetic field is increased the LL degeneracy increases and more electrons inhabit the

increased number of states in the lowest LLs, containing both integer and fractional filling

factors as discussed below.

1.1.2 Hall effect

The Hall effect describes the behaviour of charged particles in a conductor in the presence of

an applied magnetic field. Specifically, in 1879 Edwin Hall measured a voltage transverse to

the current passing through metal foil in the presence of a magnetic field at room temperature

[3].

+
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+
+
+
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Figure 1.2 Cartoon of the Hall effect in a wafer. A current I flows through
a conductive material in the presence of a perpendicular magnetic field B causing
electrons to drift to the side. This creates a transverse voltage VH [4].

This observation is explained by the Lorentz force, which states that a charged particle

moving in the presence a magnetic field experiences a force given by
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Chapter 1. Quantum Hall Effect

FB = −e(v×B), (1.4)

where FB is the component of the Lorentz force driven by the magnetic field, e is electron

charge, v is the electron velocity and B is the magnetic field vector. In the Hall effect,

electrons drift transversely to the original current flow causing an accumulation of charge

and a voltage potential across the sides of the sample. This charge imbalance creates an

electric field with its own force

Fe =
eVH
w

, (1.5)

where w is the sample width and VH is the transverse voltage known as the Hall voltage.

As the Hall voltage increases, so does the electrostatic force and equilibrium is then reached

between the two, Eq. 1.4 and 1.5, yielding

eVH
w

= evdB, (1.6)

where vd is the electron drift velocity. To further understand the Hall effect, we begin by

considering classical current flowing through this sample,

I = NevdA (1.7)

whereN is the electron density and A = wd is the area within which the electrons flow defined

by the sample width w and thickness d. Rearranging Eq. 1.7 for drift velocity substituted

into Eq. 1.6 provides the relationship between Hall voltage, current, and magnetic field,
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Chapter 1. Quantum Hall Effect

VH =
IBw

eNA
. (1.8)

If we consider a thin sample where d � w, the electron density is well-defined by planar

density in the 2D limit and we can utilize n = Nd. Canceling out terms, the Hall voltage

becomes

VH =
IB

ne
. (1.9)

Since longitudinal electron transport in the direction of current flow is unaffected by the

magnetic field B, the longitudinal resistance Rxx follows Ohms law relation,

Rxx =
Vxx
I
. (1.10)

Recalling the equilibrium from Lorentz (Eq. 1.4) and electrostatic force (Eq. 1.5), we readily

obtain that there is no current flow in the transverse direction in the sample, only voltage.

By convention, we define the resistance relation from VH , where RH = VH/I, to be

RH =
B

ne
. (1.11)

It is important to note that Hall resistance depends solely on the strength of the magnetic

field and electron density and that no physical parameters of the sample, such as size, are

involved.

1.1.3 Integer quantum Hall effect

The quantized states of the Hall effect were first observed in 1980, when von Klitzing, Dorda,

Pepper, and colleagues demonstrated quantization in the Hall resistance of a 2D electron
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Chapter 1. Quantum Hall Effect

system at high magnetic fields [5]. The plot of RH contained strong plateaus, whereas

resistance follows the classical behaviour and is linear in B. Additionally,the spacing between

plateaus followed a pattern of fundamental units, h/e2, with h the Planck constant and e the

electron charge. This discovery later led to the adoption of the latest universalised measure

of resistance [6].

Figure 1.3 Quantized plateaus in Vxx = IRxx and VH = IRH as a function
of B field in GaAs at 1.2K. RH increases linearly with magnetic field, however
it is also striked with quantized at multiples of h/e2 seen as plateaus. At the same
B values, the minima in Rxx occur when the Fermi energy lies between two energy
levels, such that the density of states at the Fermi energy is a minimum. Figure
from Cage et al. [7]

The quantum Hall effect is observed when the Fermi energy lies in the energy gap of

a group of many electrons with two-dimensional freedom, often in an environment called a

two-dimensional electron gas (2DEG), and if the thermal energy is low enough to prevent

excitations across the gap. In the quantum Hall regime, plateaus in RH appear at well-

defined values of B. For the IQHE, transverse resistance follows integer indexing denoted

by i = 2, 3, 4..., where

7



Chapter 1. Quantum Hall Effect

RH =
h

ie2
(1.12)

where h is Planck’s constant and i is the index for integer filling.

1.1.4 Fractional quantum Hall effect

Indexing of states in the fractional quantum Hall effect (FQHE) can be conceptualized as

the ratio between charge carriers (electrons) and magnetic flux quanta. The fractional filling

factor is denoted as ν = n
nB

, where n is the electron density and nB = B/Φo, where the flux

quantum Φo = h/e. To explain the fractional filling protocol, we can take the example of the

fractional states in the lowest LL. Here n = 1 and spin branches are counted as nB = 2, 3...

(e.g. v = 1
3
). Compared to the i index system from the IQHE, ν is the more general form

of i and ν can be written as i when n is a multiple of nB. Interestingly, in all cases where

the quantum Hall states are well formed, (i.e. σH = h/νe2) be it integer or fractional,

concomitantly Rxx vanishes.

Dan Tsui and colleagues observed that exact quantization in the Hall resistance occurs

together with a zero value in the magnetoresistance in 1982 [8]. This is the fundamental

characteristic of the QHE. Further, conflicting with early theories of the QHE, Tsui and

Stormer, and Gossard observed fractional filling within the lowest Landau level with a 1/3

filling factor. Different filling fractions display different physical behaviours, including non-

Abelian statistics [9]. As it is not directly related to measurements conducted in this work,

the FQHE only bears mention here. Many interesting studies have been conducted in the

past forty years and further reading can be found in the following works [Girvin1990, 10–

13].
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Chapter 1. Quantum Hall Effect

Figure 1.4 First observation of a fractional quantum Hall state. Integer
states as well as fractional filling factors ν within first LL are present. At low
temperatures, ρxx vanishes at the plateaus in ρxy. Image from Tsui et al. [8].

1.2 Transport measurements in 2D electron gases

We have seen that 2DEGs with characteristically high-mobility have played a foundational

role in QHE experiments over the past four decades. This section explores the qualities of

2DEGs and certain measurements of their characteristics used in quantum Hall experiments.

2DEGs are hosted inside a heterogeneous semiconductor, most commonly created using

molecular beam epitaxy (MBE) and modulation doping. The wafers are created by spraying

GaAs and AlGaAs molecules on to a GaAs substrate inside an ultra-high-vacuum chamber

(see sample growth sheet in Appendix D). Modulation doping involves adding silicon atoms

9



Chapter 1. Quantum Hall Effect

Figure 1.5 Two dimensional electron gas (2DEG). a) Spacial diagram of a
GaAs heterostructure. b) Sketch of energy levels within the wafer levels with 2DEG
in the quantum well seen dipping below the Fermi energy EF . Image from Rodriquez
et al. [14].

during the epitaxy process such that the electrons from silicon atoms in the AlGaAs layers

will migrate to the GaAs regions, which possess lower-energy conduction bands than the

AlGaAs layers [15]. The resulting effect provides delocalized electrons from the silicon nuclei

within the wafer’s crystal structures. The layers of deposition for low-temperature experi-

ments are chosen such that, once cooled, the electrons will "sink" into a 2D quantum well

with high lateral mobility in xy and a high potential barrier in z, the height of the wafer

layers; this forms the 2DEG. Wafers are often 2" or 4" circles with width d ' 0.5 mm with

the quantum well 30 nm thick set 100 nm below the wafer surface. To obtain the energetic

confinement for low-dimensions in semiconductors, the average thermal energy of the elec-

trons must be lower than the excitation energy along the confined direction, ∆ ≥ kBT [16].

To this end, experiments are often conducted in refrigerators with temperatures in the tens

of milliKelvins (mK).

As presented in Section 1.1, the QHE possesses geometry-free relations. To obtain mea-

surements without experimentally imposed geometric constraints, it is common to measure
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Chapter 1. Quantum Hall Effect

resistivity ρ and conductivity σ, the geometrically-independent analogues of resistance R and

conductance G, respectively. In experiments, utilising certain simple shapes, such as squares,

offers ease of translation from measured conductance to conductivity, where σ = G/L = G A
W

and A = WL is wafer area, width, and length (Fig. 1.6). An example of this can be seen in

Fig. 1.7, where Van der Pauw wafers allow for the elimination of geometric factors of resis-

tance. It also provides the ability to take multiple comparable cross-sample measurements

simultaneously to eliminate wire resistance.

Figure 1.6 Four-point conductance measurements of a Hall bar device.
A,B,C, and D are ohmic contacts on the GaAs semiconductor, where at A: voltage
is applied from a lock-in amplifier to R1 such that a current is supplied to contact
A after being divided using R2. Current is measured from contact B after passing
through the device under test (DUT). Voltage is measured by taking VC-VD. Vsrc =
0.1 V such that Isrc = Vsrc

R1
= 100nA.

Further, it can be convenient to measure conductivity rather than resistivity due to the

values of current and voltage used in transport measurements. For example, if resistivity

is too small for the experimental setup, conductivity will be large enough to measure. Ad-

11



Chapter 1. Quantum Hall Effect

ditionally, some studies rely on conductivity measured via signal transmission (discussed in

Sections 2.2.2, 2.2.3). Conductivity is defined from current and electric field in a medium as

J = σE; however, in the presence of a magnetic field and transverse voltage, conductivity is

anisotropic and is best expressed by the conductivity tensor

σ̂ =

 σxx σH

−σH σyy

 . (1.13)

1.2.1 Mobility and charge carrier density from Van der Pauw mea-

surements

As mentioned in Section 1.1, having highly mobile electrons is necessary for observing quan-

tum Hall states. Here, we briefly discuss mobility in the QHE as well as the density of charge

carriers. Mobility is defined as the ratio of the drift velocity to the electric field [17],

µ ≡
∣∣∣∣VdE
∣∣∣∣ =
|e|τm
m

(1.14)

where vd is drift velocity, E is electric field, e is electron charge, m is momentum, and τm

is momentum relaxation time, which will . Note that mobility is non-directional. The ideal

system is often referred to as a "pure" heterostructure semiconductor, in reference to high

drift velocity and long relaxation time or low scattering. The best mobilities in 2DEGs in

physics today are ∼ 35× 106 cm2V−1s−1 [18].

We can extract mobility experimentally from transport measurements. This is very

useful for experimentalists because one can use a small piece of a semiconductor wafer to

measure mobility and determine whether that heterostructure is a good candidate for hosting

quantum Hall states before fabricating a more advanced device out of the wafer. Many 4"
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Figure 1.7 Van der Pauw (VdP) geometric device for finding the density
and mobility of a semiconducting wafer. Left: VdP geometry makes use of
square symmetries to measure resistance or conductance in various directions across
a small piece of wafer. Since width and length are the same in VdP geometry, one
can compare various configurations for current and voltage measurements support-
ing geometry-free density and mobility measurements. Right: VdP device with
thermalizing platform (silver) and 3 × 3 mm GaAs semiconductor (black) placed
in the center. Current and voltage are transmitted and measured using contacts on
the wafer’s sides or corners using the indium-annealed wires, seen around the edges.

wafers are heterogeneous and as such it is possible to find significant differences in density

and mobility between various millimeter-scale pieces taken from the disk. To extract mobility

from transport measurements, we first extract charge carrier density, n. This is achieved by

taking the linear fit of the integer Landau levels from σH versus magnetic field in the high

B regime by rearranging Eq. (1.9), such that

n =
IB

eVH
. (1.15)

Once we obtain n, the mobility can be calculated from

σ = µ n e. (1.16)

This formula is applied to a fit of the low-field resistance on either side of B = 0. When

4-point contact measurements are used, this method also accounts for the contact resistance
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in one’s device wiring. Unfortunately, I have not been able to measure my Van der Pauw

devices due to laboratory closures for COVID-19, and so I am unable to demonstrate this

technique. However, a full description can be found in Benjamin Schmidt’s PhD thesis [19].

1.2.2 Dingle plots and quantum lifetime measurements

Conductivity (or resistivity) can be used to determine the Landau level broadening Γ =

h̄/2τq, where τq is the so-called quantum lifetime. Quantum lifetime is a measure of scattering

of charge carriers and depends on material properties. In the low magnetic field regime

(B < 1 T), ρxx oscillates, known as Shubnikov de Haas (SdH) oscillations, at some frequency

from which we can determine Γ or τq from its amplitude. The dependence of quantum

lifetime on the magnetic field depends on the form that the oscillations follow, namely either

∆ρxx
ρxx

= A exp
(
−π
wcτq

)
, for Lorentzian broadening or, (1.17)

∆ρxx
ρxx

= A exp
(
−2π2Γ2

h̄2w2
c

)
, for Gaussian broadening, (1.18)

where A is a constant that depends on the relationship between conductivity and the DOS of

the system. If log(∆ρ/ρ) varies linearly with 1/B2, then the LLs follow Gaussian broadening.

If log(∆ρ/ρ) varies as 1/B, then the broadening is Lorentzian. We can identify the closer

fit between the two by making a so-called Dingle plot (Fig. 1.8). Here, A is extracted by

taking the logarithm of either equation to find the linear fit. By log laws, A becomes the

y-intercept in the linear equation y = mx+ b and so A = 2 if ρxx is proportional to the DOS,

and A = 4 if ρxx is proportional to the square of the DOS.
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A = 18.3
    = 1.56 ps

A = 3.29
    = 0.298 ps

Figure 1.8 SdH oscillations and Dingle plots for sample VA141 in circu-
lar geometry (Corbino). Data from postdoctoral researcher Dr. Keyan
Bennaceur in 2015. Top: The frequency of SdH oscillations in B is dictated by
the quantum lifetime of the charge carriers in the 2DEG. By subtracting out the
moving average (black), we can plot the amplitude. Bottom: Linear fits of the os-
cillation amplitude helps to ascertain whether the SdH follows Lorentzian (Middle)
or Gaussian (Right) broadening. We find Gaussian broadening provides a closer
linear fit and moreover, provides broadening values closer to previous findings [19],
with A = 3.29, Γ = 12.8 K, and τq = 0.298 ps.
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1.3 Gated devices for Hall state interferometry

1.3.1 Interferometry

As we have reviewed in Section 1.1, measuring quantum Hall states requires manipulation of

a magnetic field to alter the charge carrier density to magnetic flux ratio. An analogous and

complementary technique is to apply voltages to deplete electrons locally [5]. Voltage can

be applied using a range of types of gating configurations depending on the desired current

path and device geometry. Interferometric gating allows more intricate current control to

further investigate single particle interference or correlated particle many-body effects of the

FQHE.

Interferometric systems for the QHE are comprised of a series of quantum point contacts

(QPCs) arranged in order to transmit and reflect signals and measure interference. Common

styles for the QHE are Mach-Zehnder [21, 22] or Fabry-Perot [23, 24], the latter used for

the flip-chip devices here. A Fabry-Perot interferometer (FPI) is, in its most basic form,

comprised of two sets of opposing QPCs with an additional plunger gate in between to

control the area around which constricted current will flow [25].

1.3.2 Flip-chip device

Traditional interferometry fabrication methods involve depositing metal gating directly onto

the wafer surface. The electron-beam (e-beam) deposition methods used involve heat and

chemical processes to lay gates, which degrades electron mobility and introduces higher

disorder into the wafer. To maintain pristine 2DEGs, we employ a special type of device

known as a "flip-chip". This method involves a mechanical, rather than chemical, technique

to connect the gates on a wafer. Another benefit of flip-chips is easy re-use and multi-use of
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Figure 1.9 Two Fabry-Perot interferometers (FPI) on a GaAs/AlGaAs
heterostructure. Top: two variations on two pairs of QPCs with two plungers in
the middle provide the ability to vary applied voltages and confine current loops in
the 2DEG, control electron interactions and fractional filling factors ν. Letters a-d
indicate the contacts on the wafer’s corners through which current is transmitted.
Bottom: Longitudinal resistance as a function of B field shows fractional states for
both interferometer designs. Figure from Willett et al. [20].

the same wafers, which are unique in quality and difficult to replace. This method is highly

beneficial given the heterogeneity of mobility and charge carrier density across wafers.

Flip-chip gating is a known but uncommonly employed technique for studying the QHE

[26] as well as other mesoscopic electronic systems [27]. The central tenet of flip-chip devices

is the deposition of the metal gates or contacts on a separate substrate, which is then

mechanically pressed on to the wafer under study to induce a field effect. In our flip-chip

devices, thermally conductive and electronically insulative substrates are used to hold the

gates, such as sapphire. A 10-30 nm coating of Al2O3 using atomic layer deposition (ALD)

is added on top of the gates to prevent electric discharge from the gates to the wafer [28].
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Figure 1.10 Conventional and flip-chip gating on semiconductor wafers
from Bennaceur et al. [26]. a., b., c. With conventional gating, an e-beam
and resist method is used to deposit metal directly on to the wafer. d.,e. Flip-
chip gating uses a separate substrate upon which the metal gates are deposited.
The substrate is then mechanically pressed on to the wafer. f. The only chemical
process the wafer undergoes is to deposit or anneal ohmic contacts at the edges,
leaving the central region where the gates act untouched. g. The gates are made
with e-beam lithography resulting in highly precise, narrow gates in the tens of
nano meters. h. The flip-chip device can be assembled with spring loaded screws
and a large top sapphire plate to form contact between the wafer (black) and gates
(transparent middle layer across the wafer).

Mechanically connecting the gates to the wafer prevents damage to the 2DEG from chemical

deposition processes. Additionally, this modular design allows for easy disassembly leaving

a pristine wafer for use in later experiments of different configurations.

The flip-chip gates can manipulate electron density in the wafer, and therefore sweep

filling ratios by a field effect from the voltage applied to the metal tips (Fig. 1.10(f)). It

is thought that the distance between gates and wafer cannot be greater than ∼100 nm

before the electromagnetic field that reaches the 2DEG becomes to be too small to have

any noticeable affect. To this end, there is significant technical difficulty creating functional
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flip-chip devices for studying the QHE, as discussed further below.

I assembled flip-chip devices to test and improve gating methods developed by past col-

leagues in the laboratory. The goal was to use the flip-chip techniques on higher mobility

wafers that offer the potential to host fractional quantum Hall states but that are more diffi-

cult to induce a field effect in. Using flip-chip gating for the FQHE has not been previously

published. I took old devices made on wafers from Dr. John Reno at Sandia National Lab-

oratories (VA123) and Dr. Loren Pfeiffer at Princeton University (5.12.00.1). The flip-chip

devices were made of four parts: the wafer in a rectangle for Hall bar geometry, a sapphire

piece with the metal gates made of titanium and gold with nickel (∼150 nm thick) and coated

with insulating PMMA (∼20 nm) to prevent electric discharge from the gates, another piece

of sapphire on top to press the gates down, a G10 plastic board with pins to plug on to the

refrigerator headers, and spring-loaded screws holding the assembly (Fig. 1.10 h.).

The previously constructed devices had accumulated a lot of dirt over their three to

five year lifespan, adding the risk of misalignment of the gates with the wafer (see dirt in

Fig. 1.11). I cleaned and reassembled the devices, then attempted to pinch off longitudinal

conductance σH . I used an Oxford He3 refrigerator to cool the devices without a magnetic

field to see if the gates were functioning before using a refrigerator with a magnetic field

to measure Hall states. My devices were made with Hall bars, which are long rectangles

comprised of a series of equal squares. With this configuration, longitudinal resistance or

conductance can be converted to resistivity or conductivity by dividing by the area in between

the ohmic contacts.
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Figure 1.11 Dirt accumulated on various parts of the wafer (PF 5.12.00.1)
and gates. Top left: The Hall bar wafer had significant dust and grease accu-
mulated since original construction. Top right: Once cleaned (see Appendix B),
some ohmic contacts fell off requiring re-annealing. Bottom left: Residue, per-
haps evaporated liquid, rests on the sapphire substrate that hosts the gates. Right:
Grease on the wafer, before disassembly, could create too large a gap between gates
and heterostructure.

To pinch off the gates, I applied voltages from -40 V to +40V on opposing FPI gates to

create an electric field effect depleting electrons in the area between the ohmic contacts. I

was unable to notice a significant change in conductance and have no indication of whether

there was any field effect present. I then mounted different gates with two QPCs without

plungers and scanned from 0 to -120V and 0 to +120 V again with no clear sign of electron

depletion (Fig. 1.12).
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Figure 1.12 Attempted conductance pinch off of flip-chip d evice (PF 
5.12.00.1). Top: Conductance as a function of gate voltage (noise floor ∼0.003 mS, 
median conductance ∼1.158 mS). Voltage increase should displace electrons reduc-
ing conductance, however no decrease is seen. Bottom: Leakage current measured 
simultaneously with conductance (circle) compared with leakage current measured 
with voltage applied only to the breakout box (cross).

1.3.3 Postmortem analysis

Even though I thoroughly cleaned the wafers and worked on mechanically aligning the gates

on the sapphire flat on the wafer, I was unable to observe electron depletion marked by

a reduction in conductance. There are a number of possible reasons for this, as discussed

below.

It is unlikely that the gates were leaking since I measured leakage at the breakout box

with an applied voltage both while measuring the 2DEG’s conductance and later on the

breakout box without the flip-chip and with non-grounded plugs (Fig. 1.12 Bottom). Even
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with the 2DEG connected, the gates are designed to function as charged metal rods, that is,

they create a field effect and there should be no current running from gates into the wafer,

to ground, or to the breakout box. Leakage current during attempted pinch off is within

∼ 5% of the leakage current with the breakout box on its own, suggesting that there were

no current leaks between the gates and the breakout box, wafer, or ground.

It is possible that the gates were not parallel or close enough to the wafer surface and

2DEG beneath. Dirt in between the gates on the sapphire substrate and the wafer is a

common cause for misalignment. Particles of dust ∼5 microns in diameter are ubiquitous in

the laboratory environment and could separate the gates from the wafer preventing a field

effect from reaching the 2DEG. Even with cleaning for dust and grease, another cause for

misalignment could be an uneven surface on the wafer or bumps on the fabricated gates on

the sapphire. One way to confirm proper alignment in a flip-chip device is by looking at

Newton rings. These rainbow wave patterns are visible to the naked eye and can form from

light reflected between the GaAs wafer and the sapphire. If there is no angle in the space

in between the substrates, there would only be one colour of light visible on the substrate.

More stripes of different colours would indicate misalignment, such as circular Newton rings

surrounding a large dust particle. It is possible to use these Newton rings to identify lack

of parallelism and to adjust the four-point spring-loaded screws. I did not find any such

circles, although I did see wide banded Newton rings after considerable number of attempts

to remove them.

It is possible that the gates received an electric shock from static discharge, which has

happened with other sets of gates (Fig. 1.14). It is hard to know exactly when in the fabrica-

tion and assembly process large enough electric discharge could burn the gates. It is possible

to occur from human touch if the person is not grounded and if they have accumulated static

charge. For example, walking can contribute to static discharge on the order of thousands of
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Figure 1.13 Newton rings visible on the flip-chip device to the naked eye.
A single curved rainbow is visible across the device with one tone over the area
of the FPI gates. Wide, non-repeating colour bands such as these indicate better
alignment.

Volts [29]. However, the extreme caution used when handling the devices leaves little pos-

sibility for direct handling errors. Care was taken to ensure connections between the device

fixed on the refrigerator and the breakout box were both grounded in between measurements

and that I was connected to the lab’s grounding source when taking data. There is a chance

the gates were burnt through electrostatic shock while cleaning the sapphire, although they

were inspected under microscope before being mounted on the wafer afterwards (an example

of burnt gates is shown in Fig. 1.14).

A final consideration is whether the noise level in the experiment was too high to measure

pinch-off of conductance. This scenario is unlikely, if the device, cryostat, and voltage and

current meters can be compared to that of previous work [26]. Bennaceur and co-workers

measured a decrease from ∼3 to ∼0 e2/h. I measured a baseline of ∼1.158 mS (∼0.03 e2/h)

on a four-point measurement. Since my noise floor ∆S ' 0.005 mS, I should have been able

to see conductance decrease if a significant field effect was present.

Future flip-chip measurements would be well served by fabricating brand new gates on
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Figure 1.14 Microscope image of burnt FPI gates with an additional
plunger on the side. At the convergence of the gates in the center, where the
gates act on the 2DEG, lies a dark brown spot with now truncated metal tips. This
is indicative of an electric shock that burnt off the tips of the thin metal gates.

sapphire, which was scheduled for Winter 2020 until the laboratory closure due to COVID-19.

It could be that the 10’s of nanometers of Al2O3 ALD became rough or otherwise damaged

over the years since fabrication and was unable to be properly cleaned. A fresher coat might

help achieve a closer and flatter fit between wafer and gates.
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Chapter Two

Quantum Faraday Effect

The Faraday effect is the optical analogue of the Hall effect. The Hall effect is the generation

of an electric field EH transverse to the direction of current flow I and magnetic field B

caused by the Lorentz force (Fig. 2.1 (Left)). The Faraday effect also arises from the action

of Lorentz force upon a charge, ultimately resulting in the rotation of polarization plane

of a linearly polarized electromagnetic wave (Fig. 2.1 (Right)). We define θF as the angle

of linear polarization rotation with respect to the incoming wave polarization. In many

materials, Faraday rotation is weak and well described by a linear relation θF = V dB, where

V is the Verdet constant and d is the thickness of the medium.

θH θF

B B

θH = μ B θF = V d B

Figure 2.1 Hall and Faraday rotation. Left: Classical Hall and Middle:
classical Faraday rotation as a function of magnetic field B. Right: Cartoon of
Faraday rotation through a material [4].
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As we will show in this work, the high-mobility 2DEG enables a giant single pass rotation

of θF ' 45◦ (' 0.8 rad) at the crossover between the low and high magnetic field regimes

and robust plateaus observed at quantized filling factors with Hall indexing i= 2, 3, 4... in

high magnetic fields (1 T < B < 6 T). This chapter provides an overview of past research

and a derivation of quantized angles of Faraday rotation as well as a recent study.

2.1 Derivation of Faraday angle of rotation in a 2DEG

Rotation of the Faraday angle of linearly polarized microwaves can be arrived at from simple

theories for microwave transmission in space. We can begin with the transmission of an

electric mode through a medium, here a semiconducting sheet with a 2DEG, in free space.

Charge carriers are subject to a Lorentz force in the presence of applied electromagnetic

fields,

F = −e(E + v×B), (2.1)

where E is a electric field in the xy plane with charge carries of velocity v and B = B0ẑ is the

applied magnetic field applied perpendicular to the sheet. The electric field from the signal

at frequency ω induces an alternating current jx = σyxEy in the 2D layer [30]. This current

induces another electromagnetic field and so on. The induced currents and electromagnetic

fields accumulate a phase and the angle of rotation θF of this polarization of the outgoing

wave is given by,

θF = tan−1(
Ey
Ex

). (2.2)

The electromagnetic wave can be described as possessing left and right -handed transmission

t± = tx ± ity that depends on the sheet conductivity. From Fresnel coefficients [31], the
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transmission through a medium with a refractive index n is,

t± =
2

1 + n+ Zσ±
, (2.3)

where Z = Z0 = 377 Ω is the mode impedance in free space, and σ± = σxx ± iγσyx is the

sheet conductivity (in free space, γ = 1). We can express the Faraday angle as

tan(θF ) =
ty
tx

=
1

i

(
t+ − t−
t+ + t−

)
=

1

i

(
1
t−
− 1

t+
1
t−

+ 1
t+

)
. (2.4)

Plugging in (2.3),

tan(θF ) =
1

i

1 + n+ Zσ− − (1 + n+ Zσ+)

1 + n+ Zσ− + (1 + n+ Zσ+)
(2.5)

=

(
1

i

)
Z(σ− − σ+)

2(1 + n) + Z(σ− + σ+)
(2.6)

=
Zσyx

1 + n+ Zσxx
, (2.7)

which is equal to tan(θF ) = Zσyx
2+Zσxx

in free space (n = 1), and −σxy = σyx. If in the quantum

Hall regime, conductance becomes σxx = 0 and σyx = ie2/h, where i= 2, 3, 4, 5... is the

integer quantum Hall filling factor. The conductance matrix takes the form

~J(ω) = σ̂ ~E(ω) =

 0 −ie2/h

+ie2/h 0

 ~E(ω). (2.8)

Then, as first found by Volkov and Mikhailov in their 1985 seminal work [30], the expression

for quantized Faraday angle through a material in free space (Z = Z0) becomes

tan(θF ) =
Z0(ie2/h)

2 + Z0(0)
=

iZ0e
2

2h
= iα, (2.9)
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where α = Z0e
2/2h ' 1/137 is the fine structure constant. This prediction is seen in

subsequent sections to elegantly describe the data from our current work, even when elec-

tromagnetic confinement is introduced.

2.2 Previous experimental works

First discovered classically in 1846 [32], Faraday rotation manifests itself in a wide range of

physical settings, from engineering on Earth to light from stars in outer space [33, 34]. Fara-

day rotation can be seen weakly in many materials in two- and three-dimensions. Research

on the Faraday effect within condensed matter physics and engineering offer new insights

into non-reciprocal electromagnetic responses of materials. One application of this is for

circulators and isolators, which traditionally rely on ferrimagnetic ceramics which exhibit

static behaviour not tunable by external voltages [35]. Another source of motivation for

low-dimensional Faraday experiments is for optical manipulation of electron motion.

Recently, both experimental [36] and theoretical research has offered promising sugges-

tions for utilizing Faraday rotation for quantum phase gates [37]. Additionally, further

research goals have been established for utilizing quantized Faraday rotation for quantum

computation applications [36, 38].

2.2.1 Microwave experiments (GHz)

In the late 20th century, researchers studied electromagnetic wave frequencies ω in the regime

ω < ωc, where h̄ωc is the characteristic amplitude of the impurity potential with ωc the fre-

quency of the cyclotron motion of the charge carriers in the material. Volkov et al. published

a theoretical work outlining Faraday rotation in free space, where θ = e2/h̄c = 1/137 deg

[30]. Volkov and collaborators then documented the first evidence for the quantization of
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the Faraday effect in a two-dimensional electron system in GaAs in an uncalibrated setup

[39]. This work was conducted at low-frequencies when Landau levels are present in the

2DEG system when subjected to a large magnetic field. Volkov and Mikhailov suggest that

the Faraday effect is dictated by conductivity. They propose that quantum Faraday rotation

could elucidate the dispersion of σyx(ω), the Hall conductance as a function of the frequency

of microwave or other light [30].

Figure 2.2 Findings from Volkov et al. of uncalibrated, quantized Faraday
rotation [39]. Polarization plane (P ) versus magnetic field B at low (high) field
on the lower (upper) curve. Hints of plateaus in the polarization are shown with
arrows. Inset: Density n = 5.8× 1011 cm−2 was extracted from the Landau fan.

A small number of experiments with microwaves have since been conducted, including

Skulason and colleagues’ study using field effect tuning in Faraday rotation of microwaves

(∼20 GHz) in graphene [35]. Sounas and colleagues show transmission and reflection ampli-

tude as a function of frequency and conductivity as a function of magnetic field from 0 to 5

T suggesting that single layer graphene could be a good candidate for hosting giant Faraday

rotation of microwave signals [40].

29



Chapter 2. Quantum Faraday Effect

2.2.2 Optical Experiments (THz)

Recent quantized Faraday rotation measurements have been conducted in the optical tera-

hertz (THz) range, where ω ' ωc. All experiments to date have been at low temperatures,

i.e. close to, or below the liquefaction point of Helium (∼4.22 K).

Mittleman and colleagues used THz signals as a non-contact method for measuring Hall

states in GaAs [41]. Exploiting the small difference between ωc and the THz signal fre-

quency, researchers mapped out charge carrier density and mobility spatially on the sample

without the need for attaching any potentially damaging contacts. Ikebe and colleagues

used THz signals to probe σyx(ω) resulting in plateaus in conductance around ν = 2,4,6 in

a modulation-doped GaAs/AlGaAs heterostructure [42].

Crassee and colleagues use single atomic layer graphene to provide rotation of polarization

of THz light of ∼ 6o [38]. Shimano and colleagues conducted a similar study on monolayer

graphene with electron density n = 2.2 × 1011 cm−2 [43]. They observe hints of integer

filling from rotated Faraday angle and a magneto-optical Kerr effect between graphene and

a silicon substrate. Wu and colleagues show Faraday rotation in Bi2Se3 following the fine

structure constant within 0.4% of its known value [44]. This bismuth selenide material was

used for its topologically insulating properties with THz pulses resonating through the thin

film resulting in both Faraday and Kerr rotations.

Shuvaev and colleagues use HgTe quantum wells grown on GaAs to observe quantized

Faraday angle rotation using Mach-Zehnder interferometry [45]. Plateaus in Faraday rotation

is observed in steps of σyx = e2/h. Dziom and colleagues use 2D topological surfaces at the

boundaries of a 3D HgTe on CdTe sample with density ∼ 1011 cm−2 to measure Faraday

and Kerr rotation [46]. Their study hints at quantized σyx and attributes Faraday rotation

equal to the fine structure constant to topological magnetoelectric effects of the material.
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2.3 McGill-Sherbrooke collaborative work

A study was conducted collaboratively between laboratories located at McGill and Sher-

brooke to further investigate Faraday rotation in the microwave regime [4]. A giant single

pass rotation of θF ' 45◦ (' 0.8) rad at the height of the classical regime was measured as

well as quantized Faraday rotation with Hall indexing i= 2, 3, 4... in high magnetic fields (1

T < B < 6 T).

2.3.1 Experimental setup

The Faraday rotation was measured inside a hollow circular waveguide with a diameter of

23.825 mm. The waveguide is made out of silver plated brass and the orthomode transducer

is silver plated copper.

Figure 2.3 Metal waveguide utilized for the Sherbrooke Experiment
(photo by V. Suresh). An electric diode in the left most piece emits the mi-
crowaves, which passes through the wafer held in the waveguide in between the
middle sections, is split into orthogonal modes by the orthomode transducer, and is
sent back to the vector network analyzer (VNA).

A ∼10 mm × 10 mm piece of a GaAs/AlGaAs wafer (VA141) grown by Molecular Beam

Epitaxy (MBE) at Sandia National Laboratories by Dr. John Reno was placed inside the

waveguide. The wafer was fixed with vacuum grease on to a custom-designed copper piece,

which screwed in between circular waveguide sections. The copper insert is fitted with a

9 mm diameter circular iris for the microwaves to pass through the wafer. The iris’ small
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diameter compared with the waveguide diameter of 23.825 mm is due to the constraint of a

10 mm square wafer size.

B

port 1
port 3

orthomode
transducer

port 4
signal

generator
circular

waveguide

2DEG

iris

Figure 2.4 Experimental setup of Faraday microwave rotation. A linearly
polarized electromagnetic wave is injected into a circular hollow waveguide (port
1) that supports two orthogonally polarized TE11 modes. The transmitted field
is measured using an orthomode transducer in a direction parallel (port 3) and
perpendicular (port 4) to the incoming electromagnetic wave [4].

The assembly was housed in a BlueFors dry dilution refrigerator with the waveguide

inserted vertically in the 4" bore of a superconducting solenoid magnet with positive (+)

direction aligned with the direction of propagation of the incident microwaves. This refrig-

erator has a base temperature of ∼7 mK at the cold plate, to which the waveguide assembly

was thermally anchored. While there was no direct measurement of the temperature of the

2DEG, the following comparison of Faraday rotation at different mixing chamber tempera-

tures (Fig. 2.6) suggests the electron bath to be cooled to at least ∼200 mK.

Faraday rotation was induced by applying a ± 6 T magnetic field in the direction of the

waveguide length with the superconducting solenoid surrounding the refrigerator’s tail. For

the microwave experiment, a linearly-polarized electromagnetic wave was injected via port

1 into the waveguide. Supporting two orthogonally polarized TE11 modes, the output signal

is split orthogonally via an orthomode transducer which transmits the output power to a

vector network analyzer (VNA) (Fig. 2.4).
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2.3.2 Experimental data
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Figure 2.5 Faraday rotation through the 2DEG. A) Perpendicular port scat-
tering parameter S41 and B) Parallel port scattering parameter S31. The solid
(dashed) line denotes the positive (negative) magnetic field polarity along the waveg-
uide length. C) Magnetic field dependence of Faraday angle θF at base temperature
of the dilution refrigerator (∼7 mK). The blue line demonstrates a close fit to a
classical Drude conductivity model. The inset portrays a zoom in of the same data
at the largest point of Faraday rotation, between low and high field regimes.

Data was collected at Université de Sherbrooke using two out of four-ports of an Agilent

PNA-X VNA. The Faraday angle was determined by measuring the amplitude of transmis-

sion scattering parameters (s-parameters) of the two orthogonal the TE11 modes. |S41| is

the amplitude of the transmitted signal perpendicular to the waveguide length and |S31| is

parallel. Data collected in decibels (dB) was converted to linear scale to obtain the modulus
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of the tangent of the signal, | tan(θF )| = S41

S31
. The VNA also measures phase φ, which can be

used to construct the complex signal from tan(θF ) = | tan(θF )|eiφ. Magnetic field strength

was recorded simultaneously directly from the magnet source.

2.3.3 Electromagnetic confinement

A quantitative model for the observed Faraday rotation can be obtained by combining a sim-

ple theory for microwave transmission in a system with electromagnetic confinement, along

with a Drude conductivity model for the 2DEG. From a linear ansatz from the transmitted

electric fields, it can be shown [4] that Faraday rotation in a waveguide loaded with a 2DEG

is generally given by

tan(θF ) =
γZσyx

K + Zσxx
, (2.10)

where Z is an effective wave impedance, K is an effective transmission coefficient, and γ is a

mode coupling parameter. For simplicity, we assume that Z,K ∈ IR. A similar relation was

developed and applied to experiments for a simple hollow waveguide geometry without an iris

[35, 40]. In the idealized free-space scenario, Z = Z0 = 377 Ω, K = 2, and γ = 1, however

these values will be modified in the presence of electromagnetic confinement. Notably, Eq.

(2.10) is general, applying even in the presence of an iris where the near-field distribution

defies a simple analytical solution [47].

2.3.4 Classical Drude model

We now wish to develop an understanding of Faraday rotation θF in the electromagnetic

confinement of our waveguide as a function of conductivity σ. To achieve this, we utilize a

simple classical Drude conductivity tensor for our 2DEG system,
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σ̂D = σ0
1

(1− iωτ)2 + (ωcτ)2

1− iωτ −ωcτ

ωcτ 1− ωτ

 , (2.11)

where σ0 = ne2τ/m* = neµ is the Drude conductivity and ωc is the cyclotron frequency

related to the charge carrier scattering time τ and ωcτ = µB. In our experiment, τ =

m*µ/e ' 38 ps from the mobility of our wafer, µ ' 1× 106 cm2V−1s−1, which was measured

using the methods presented in Chapter 1 Section 2. As can be seen in Fig. 2.5C, by the blue

line, this simple model here accurately captures the essential features of Faraday rotation θF

over the full range of magnetic field B.

Inserting the Drude model for conductivity inside Eq. (2.7) for tan(θF ) gives

tan(θF ) =
γZσoωcτ

|K[(1− iωτ)2 + (ωcτ)2] + Zσo(1− iωτ)|
. (2.12)

In the low magnetic field regime, where ωcτ = µB � 1, B → 0, ωcτ → 0, σxx → σo, Zσo �

K|1− iωτ |. Therefore, tan(θF ) ' γωcτ
|1−iωτ | = γµB

|1−iωτ | , where in our experiment, |1− iωτ | = 2.79.

As a result θF ∝ B for B � 100 mT, as is observed experimentally and shown in Fig. 2.5.

In the high magnetic field regime, where ωcτ = µB � 1, tan(θF ) ' γZσo
Kωcτ

= γZ
K

ne
B
. Here, the

rotation θF ∝ 1/B, as is coarsely observed for B � 100 mT. To more closely describe Faraday

rotation in the high field regime, analysis that considers quantization of the transverse (Hall)

conductivity is required.

2.3.5 Integer quantum Faraday effect

We can arrive at an expression for quantized Faraday rotation in the high field regime by

applying, as discussed earlier, our simple model from Eq. (2.9) in the quantum regime when
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Landau levels are present. Volkov and Mikhailov’s 1985 calculation for quantized Faraday

rotation in free space [30] yields,

tan(θF ) =
ie2

ch̄
= iα, (2.13)

where c is the speed of light in vacuum. This is the consequence of the vanishing longitu-

dinal σxx = 0 and quantized transverse conductance σyx, where in the IQHE, σyx becomes

quantized following the integer filling number i= 2, 3, 4, 5, 6 which goes as 1/B. In an elec-

tromagnetic confinement in the quantum regime σxx = 0 and σyx = ie2/h.

When ω � ωc, as is the case with ω = 1.12 ×1010 Hz microwaves compared with

ωc = µB/τ ' 1017 Hz, Faraday rotation quantization takes a modified form by substituting

into Eq. (2.10) σxx and σyx in the quantum Hall regime:

tan(θF ) = i
γZ

K

e2

h
= iα*, (2.14)

where α* is a "fine structure constant" in a non-idealized, non-free space scenario and γ,

Z, K are electromagnetic confinement parameters specific to the experimental geometry

and frequency. Here, γ ∈ [0, 1] is a mode coupling factor found by taking the slope of the

Faraday rotation at low magnetic field. Eq. (2.14) is approximately correct without inclusion

of the refractive index of the bulk medium in a sample with thickness d small compared with

wavelength λ. In our case d ' 0.5 mm and λ ' 2.7 cm providing a ∼50 times difference.

The measured Faraday rotation angle tangent tan(θF ) is plotted versus 1/B (solid red

line) in Fig. 2.6. Six plateaus are clearly observed in tan(θF ) versus 1/B, with the lowest

three plateaus evenly spaced along both axes, and a further three evenly space plateaus are

observed with twice the step height. We confirm the origin of these Faraday rotation plateaus

with the emergence of Landau levels (LLs) by plotting a fan diagram of the assigned LL index

i for each plateau versus the reciprocal field 1/B of the mid-point of each plateau. The
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Figure 2.6 Faraday angle in the high magnetic field regime. Here tan(θF ) is
plotted versus 1/B (solid red line) at the base temperature of the dilution refrigera-
tor. The expected position of each observed Faraday plateau is shown by horizontal
markers with the quantization condition tan(θF ) = iα*. Inset: temperature depen-
dence of the plateaus and smudging of quantization at higher temperatures.

observed integer filling factor sequence i= 2, 3, 4, 6, 8... follows the LL filling factor relation

i= nh
eB

with an electron density 2.08(5) x 1011 cm−2, consistent with quasi-DC transport

studies performed on samples of the same semiconductor wafer hosting the 2DEG. Here, the

expected spin degeneracy lifting of the LLs occurs in between integer filling i= 4 and 6, at

a magnetic field value B ∼1.8 T again consistent with previous quasi-DC charge transport

studies of 2DEGs hosted in similar heterostructures with comparable electron mobility and

density. A linear fit of the indices provides a close to zero intercept of -0.06(6). This is in

keeping with other studies of quantized Hall states in GaAs, a material that normally lacks

a y-axis intercept or Berry phase [48, 49].

The Faraday rotation was also measured during a separate cool down in a slightly differ-

ent experimental configuration employing two coaxial assemblies. These measurements are

shown in Fig. 2.6 (inset) with the temperature of the dilution refrigerator at 10 mK (red
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Figure 2.7 Landau level index i versus plateau mid-points in 1/B (red
circles). The 2DEG electron sheet density ns is inferred from the linear fit of the
points (dashed line). An insignificant intercept of -0.06(6) is present.

line) where quantization is visible, and at 3.2 K (blue line) where quantization is almost

absent. In the quantum Hall regime, at temperatures kBT approaching the LL energy gap

∆, thermal excitation of electrons across ∆ gradually overpowers conductivity quantization

until it is ultimately absent. In our measurements, the plateaus of Faraday rotation θF can-

not be resolved at 3.2 K, consistent with orbital quantization present in the 2DEG caused

by a strong magnetic field.

2.3.6 Extraction of α*

We have established that the rotation of polarization of microwave signal θF is related to the

fine structure constant α. We have seen that the quantization in free space tan(θF ) = iα will

differ from that in the presence of electromagnetic confinement, tan(θF ) = iα*. From a linear

fit of the mid-points of each plateau in tan(θF ) versus 1/B (Fig. 2.7), the experimentally
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observed rotation quantum is α* = 0.0204(3) = 2.80(4)α. This is not surprising as the

quantum of rotation in an ideal free-space scenario is α, and electromagnetic confinement is

expected to modify wave impedance and field distribution such that the rotation quantum

in general should differ from its free-space value, α* 6= α.
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Figure 2.8 Extraction of γ from the linear classical Faraday regime at low
magnetic fields. tan(θF ) is shown plotted versus B from which the prefactor γ
can be extracted from the linear low field regime (inset). The inset provides a closer
look at the classical regime and shows slope has a very slight but somewhat unclear
frequency dependence requiring further investigation.

We can compare calculated and measured values of α* by looking at Eq. (2.14) and

extracting α* from our data. Since gamma is a prefactor of Eq. (2.14), the slope of the

linear regime which resides at low field is γZe2/Kh (Fig. 2.8). Once γ is extracted from the

low field regime, we can input its value to solve for Z/K as a fit parameter for the entire

curve. In our experiment, the best fit fixes Z/K = 1192(3) Ω and γ = 0.49(1). Solving

for α* in Eq. (2.14) we obtain α* = 3.10(2)α, agreeing within 10% of our measured and

extracted value of α* = 2.80(4)α.

We have observed robust measurements of quantized Faraday rotation with well-formed
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plateaus at integer filling. We have measured the quantization of Faraday rotation in the

quantum Hall regime in a high-mobility 2DEG. Microwave Faraday rotation plateaus are ro-

bust and well formed, allowing Landau level indexing and the observation of a spin-splitting

structure. Measurement of microwave Faraday rotation is thus a contactless method that may

prove useful in probing low-dimensional electronic phenomena such as the quantum spin Hall

effect [50], the quantum anomalous Hall effect [51], and the fractional quantum Hall effect

[8]. Furthermore, as a consequence of the high mobilities achievable in the GaAs/AlGaAs

2DEG system, giant Faraday rotation reaching ∼0.8 rad was observed at modest applied

magnetic fields of ∼100 mT. In the future, it is foreseeable that the Faraday effect arising

from cyclotron motion of high-mobility charge carriers in semiconductor materials and het-

erostructures could be used to isolate and circulate microwave signals, in lieu of conventional

bulk ferrites that rely on off-resonant Larmor procession to impart Faraday rotation. Such

potential future studies are described in the following chapters.
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Chapter Three

Design of a Faraday experiment for a

tri-axis vector magnet cryostat at McGill

This chapter contains details on the design and methodology for upcoming Faraday ro-

tation experiments at McGill. I designed an experiment to probe quantized rotation of

microwave polarization of up to 20GHz frequency using McGill’s recently commissioned low-

temperature refrigerator equipped with a tri-axis vector magnet. The experiment will utilize

newly grown, high-mobility GaAs semiconductor heterostructures from Dr. Loren Pfeiffer

at Princeton University and a newly designed wafer apparatus to probe remaining questions

about quantized Hall states via the Faraday effect.
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3.1 Microwave experiment design

3.1.1 Considerations of operating frequencies

Desired operating frequencies affect the experimental parameters of waveguide experiments.

Foremost, the waveguide diameter is dictated by the relationship between frequency f =

ω/2π and h̄ωc, where ωc is dictated by magnetic field strength and wafer characteristics. As

we have seen earlier, in the QHE, Faraday rotation angle is predicted by Fresnel analysis to

become quantized as (in free space),

tan(θF ) = i
Z0

K

e2

h
= iα, (3.1)

where Z0 is the impedance of free space and the fine structure constant, α = γZ0e
2/h, sets

the natural scale for θF . The microwave frequency range (300 MHz < f < 300 GHz) is

particularly suitable for an experiment attempting to realize this idealized scenario because

the "low-frequency" limit ω � ωc, discussed in Chapter 2, can easily be achieved [4].

Figure 3.1 Simulation of magnetic field inside a circular waveguide. The
cross sectional view in the middle of a waveguide in the Y Z (or XZ) plane from
QWED.eu online [52].
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Due to constraints of the size cryostat magnet bore and bandwidth of the VNA, low-

mid range microwave signals between 10-20 GHz was chosen for this experiment. For our

experiment, we use the transverse electric (TE) modes, which means the electric field is

perpendicular to the length of the waveguide and magnetic field is parallel. Specifically, our

experiment utilizes the the TE11 mode, where half wavelength, λ/2, is supported in both x

and y directions in a cross sectional plane with the waveguide.
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Figure 3.2 Frequency considerations for the waveguide experiment. Fre-
quency as a function of radius is calculated using first order Bessel functions for the
lowest modes. Using the TE11 mode for our experiment provides us with a cutoff
frequency of 7.2 GHz. At 12.2 GHz, the TE21 mode is present, providing an upper
frequency bound. To change frequencies beyond that limit, a narrower or wider
waveguide could be implemented as indicated by the curves.

A simple model, assuming an infinitely long waveguide, shows the relationship between

waveguide width and the electromagnetic modes at various frequencies able to pass through

the waveguide cavity. We can also look at dispersion by plotting group velocity, vg =

c
√

1− f2c
f2
, where c is the speed of light in a vacuum, fc is the cutoff frequency (7.2 GHz for
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the TE11 mode in our system), and f is the frequency of the microwave signal.
x 

10
10

Figure 3.3 Group velocity for TE11 cutoff frequency as a function of mi-
crowave signal frequency.

3.1.2 Wafer configuration

The sample for this experiment is a GaAs/AlGaAs wafer grown using molecular bean epitaxy

(MBE) by Loren Pfeiffer at Princeton University. These possess some of the highest electron

mobilities and are made ∼0.5 mm thick in 2" round disks. GervaisLab receives the large

middle portion of the circular wafers, which generally possess the best qualities, along with a

data sheet including estimates of electron density and mobility (see sample wafer in Appendix

D). However, the 2" disks do possess heterogeneous electron density and mobility. Therefore,

the regions of the wafers that we receive must be tested for density and mobility as described

in Chapter 1 Section 2. This must be done before the wafer is mounted in the waveguide to

measure Faraday rotation.
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Figure 3.4 Wafer (black) from Dr. Loren Pfeiffer (P7.25.19.1). This wafer
was cut into a 3 × 3 mm square to test mobility and carrier density (see Appendix
A).

The wafer will be held in the waveguide by a mechanical piece acting as an iris inside

the waveguide. From here, the wafer itself can be thermalized to the refrigerator via a silver

cable from the wafer holder directly attached to the mixing chamber plate. The wafer holder

will be made of two rectangular pieces of sapphire with holes for screws. Gold deposited

on the sapphire will create the iris effect as the copper apparatus did previously (Chapter

2). The added benefit of this gold-sapphire apparatus is that any pattern of gold can be

deposited onto the sapphire with high precision on the scale of tens of nanometers using clean

room fabrication methods similar to those in Chapter 1. The sapphire wafer holder could

also be equipped with gold lines acting as flip-chipped ohmic contacts in order to perform

DC measurements on the 2DEG simultaneous to measuring microwave Faraday rotation.

Additionally, sapphire is not magnetically susceptible and the gold coating offers a thermal

connection between the silver-coated waveguide sections and the wafer. An additional gold

wire will be attached to one of the screws in the wafer holder apparatus and to the refrigerator

creating a second thermal link.
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Figure 3.5 Apparatus to hold the wafer inside the waveguide. The wafer,
portrayed transparently here, is placed between two gold-coated sapphire plates
held by two spring-loaded screws (gray). Four holes in both plates (white) allow
the closed assembly to be placed in between the circular sections of the waveguide
(Fig. 3.6 right). Sapphire is used to reduce interference with the microwaves passing
through the transparent iris, while providing mechanical support for the wafer. Gold
deposited onto the sapphire thermally connects the wafer to the refrigerator via the
waveguide body.

3.1.3 Waveguide design

Similar to the Sherbrooke experiment, our waveguide is comprised of five pieces fabricated

by Cernex Wave, with certain custom specifications (see Appendix C). Most basically, the

waveguide experiment is designed to support microwave signals passing through the 2DEG.

The goal is to provide an environment which has little or calculable effect on the microwaves,

such that we can extract and analyse the behaviour of the 2DEG alone.

Since Faraday rotation depends on magnetic field, it is important to utilize materials,

other than the semiconducting heterostructure under study, that are not susceptible to mag-
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Figure 3.6 AutoCAD design for the waveguide and placement in the Ox-
ford Triton refrigerator. Left: 3D image of the top of the piece that holds the
waveguide to the MC plate. Four screws attach the waveguide body to the piece,
which is then held on to the MC plate using the eight threaded holes seen around
the circumference. Notches are cut in radially to reduce eddy currents circling the
piece. Right: The waveguide is fixed to the mixing chamber (MC) plate (blue) by a
gold-plated copper apparatus (green, also depicted in 3D Right) and sits surrounded
by the magnet (not pictured here). The microwave signal enters the waveguide via
an electric dipole at the bottom, is transmitted past the wafer, up the length of
the waveguide and is split by the orthomode transducer and passed through two
orthogonal electric dipoles into coaxial cables back out of the refrigerator.
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netisation and to some extent, not overly sensitive to eddy currents. This is because currents

are induced in metal in the presence of a varying magnetic field, not only inducing a sec-

ondary electromagnetic field but also creating a thermal heat leak that is detrimental to low

temperature experiments. Gold and silver are not magnetically susceptible but are costly and

highly malleable. Brass is a strong, low-cost alloy made of copper and zinc, as well as other

trace elements, and is only slightly magnetically susceptible due to trace iron. The waveg-

uide body is made of silver-plated brass, utilizing silver for its high thermal conductivity to

help lower the 2DEG’s temperature towards that of the refrigerator.

Figure 3.7 Oxford Triton refrigerator tail. The waveguide assembly is attached
to the MC plate housed inside the magnet bore. Left: 3D AutoCAD drawing with
magnet in enclosed refrigerator. Right: The open refrigerator with MC plate shown
without the waveguide.

Another important factor in measuring Faraday rotation of microwaves through the

2DEG is the ability to provide a conducive environment for maintaining the electron gas
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itself. Aside from the MBE process of creating a wafer with quantum wells to host a 2DEG,

the semiconductor must be at sufficiently low temperatures for the electron gas to be present

during experimentation by creating thermal connections between the wafer and the cryostat.

Since the lowest plate, known as the mixing chambre (MC), is by design the coolest region,

the waveguide assembly is attached to this gold-coated plate. The tail fits inside the region

of the strongest magnetic field within the magnet bore. The gold plating on the attachment

piece and on the MC plate thermally links the waveguide to the refrigerator. To avoid eddy

currents induced in-plane of the copper apparatus by the perpendicular magnetic field via

Faraday’s law, notches or holes are cut in to the plate to disrupt the currents (Fig 3.6 left).

3.2 Laboratory configuration

3.2.1 VNA Data Configuration

Microwave signals will be sent from and returned to the two-port Rohde & Schwarz ZVM

vector network analyzer (VNA) mounted on a rack beside the refrigerator. The VNA is

controlled entirely by a user-interfaced software, LabGUI, which was created by previous

GervaisLab students and maintained by current students. A new driver for the VNA was

written for LabGUI to read and interface with the machine. The driver contains basic read

and write functions as per the VNA’s protocols, which are packaged and transmitted by

LabGUI via General Purpose Interface Bus (GPIB).

3.2.2 Experimental circuit

The waveguide receives the microwave signals via semi-rigid coaxial cables that run to and

from the high frequency coaxial cables of the refrigerator. Cables both internal and external
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Figure 3.8 Storyboard of the experiment. The computer software send com-
mands to the VNA such that signals are transmitted to and measured from the
waveguide experiment. Data is collected on the computer and housed locally and
in the cloud.

to the refrigerator are fitted with 2.92 mm ends and adapters with 50 ohm impedance, which

support frequencies up to 40 GHz. The VNA is fitted with 3.50 mm adapters, therefore one
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3.50 mm to 2.92 mm converter is employed. The cables that sit inside the refrigerator are

thermally connected to each plate (listed by temperature in Fig. 3.9).

4K plate

MC 7 mK

VNA Port1 

-10dB

-6dB

-10dB

~ 8-13GHz

VNA Port 2 

Waveguide

-10dB

-6dB

750 mK

700 mK

~ 35 dB at RT

MC 7 mK

Switch

Figure 3.9 Filters and attenuators circuit for microwave signals to and
from VNA. Filters are used to remove potential noise outside the desired mi-
crowave bandwidth chosen for the experiment. Attenuators help mitigate heating
from the incoming signals. Each device’s location is denoted in between the various
refrigerator plates and the dotted box delineates what is inside and outside of the
refrigerator.
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Conclusion

We have developed a theoretical and experimental road map for further experiments in

quantized Faraday rotation, in part inspired by lessons learned from previous experiments

in the QHE. We have performed DC experiments in the QHE with Van der Pauw and

Hall geometries which, with high enough mobility wafers, display integer and fractional

states via edge currents. We have examined preliminary measurements of quantized and

giant Faraday rotation and discussed future microwave waveguide experiments. Certain DC

measurement techniques and device configurations could lend themselves to cutting edge

Faraday rotation manipulation. Paired with even higher mobility samples, robust measure-

ments using microwave signals could illuminate elusive many-body FQHE states, as well as

offer applications for communication technologies. Our future experimental goals fall in to

two categories: measuring giant Faraday rotation at room temperature and demonstrating

fractionally-quantized Faraday rotation at low-temperatures–a first.
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4.1 Future experiments at room temperature

A major application for Faraday rotation could be in the replacement of conventional bulk

ferrites in microwave non-reciprocal devices such as circulators and isolators. Observing

giant Faraday rotation at room temperature, around or above π/2, could pave the way for

more robust, competitive technologies for microwave engineering. There are two qualities of

materials which might support large or giant Faraday rotation at room temperature: high

mobility and high spin-orbit coupling materials.

4.1.1 High mobility materials

Chapter 1 presented the importance of high charge carrier mobility in quantum Hall physics,

whereby electrons are afforded long, collision-free paths within their low-dimensional envi-

ronments. Past experiments in quantized Faraday rotation have used wafers with a 2DEG

of ∼ 1×106 cm2 V−1 s−1 mobility [4]. However, the highest 2DEG mobilities in condensed

matter are over an order of magnitude higher than what was used in our published study, at

35× 106 cm2V−1s−1, leaving room for improvement in our experiments with quieter electron

systems [18]. All mobilities and resistance values presented in Chapter 1 and 2 are quoted at

cryogenic temperatures, below 4K. At such temperatures, electrons have the ability to sink

into a 2D quantum well. At room temperature, 2DEGs in GaAs semiconductors do not exist

and wafer resistance can increase by four orders of magnitude. There are other materials

which possess moderately high mobilities at room temperatures, which could likely be high

enough to support giant Faraday rotation. Graphene is known to have room temperature

mobilities exceeding 1.4 × 104 cm2 V−1 s−1 [53] and has been suggested as a candidate for

microwave technologies [54]. Additionally, bismuth wires have been shown to support mo-

bilities of up to 2.45 × 104 cm2 V−1 s−1 [55], where high mobility is thought to come from
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the edges as opposed to the bulk, which has lower carrier mobility, around 1 × 104 cm2 V−1

s−1 [56].

4.1.2 High spin-orbit materials

High spin-orbit materials are known to also support quantized energy states [57], which

might be more robust at room temperatures. Quantized spin-orbit states are predicated on

the current created by a linearly changing magnetic field, which induces a net change in spin

inside a region of a material. This quantum spin conductivity could be utilized for QHE

measurements. One way to measure this spin current is via spin accumulation at the edges.

Materials with large diamagnetic susceptibility and large band gaps, such as bismuth [57]

and graphene, or graphite in 2D [58], are currently thought to support this. Measuring spin-

orbit quantization using microwaves or other high frequency signals in a waveguide at room

temperature would be a first. InAs/AlSb (type I) and InAs/GaSb/AlSb (type III) quantum

wells also provide promising materials for hosting giant microwave Faraday rotation at room

temperature with mobilities between 3 to 6×104 cm2 V−1 s−1 [59, 60]. Type I quantum wells

offer high mobility at room temperature . Type III wells can be tuned between topologically

trivial and non-trivial states. Using these materials at room temperature could provide the

largest Faraday rotation yet observed, and perhaps with no magnetic field at all, and offer

direct applications for communications technologies.

4.2 Fractional quantum Faraday effect

Whereas nearly all fractional quantum Hall states mentioned in past work were first observed

using edge current DC measurements, this thesis paves the way forward to study the many-

body FQHE via contactless Faraday rotation. The first step towards this goal will be to
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conduct the waveguide experiment presented in Chapter 3 with higher mobility wafers, i.e.

higher than our study discussed in Chapter 2. Currently, we have access to 2DEGs with

mobilities as high as 30×106 cm2 V−1 s−1, which is thirty times higher than that of our past

experiments. Observing fractionally-quantized Faraday rotation will require improvements

in 2DEG cooling preparation, signal purity and and thermalization of the electrons to unleash

the many-body interactions in the 2D bulk.

It could be that, whereas our observed integer Faraday quantization is quite pronounced

(see Fig. 2.6), the scale of the fractional plateaus would be small such that a quieter system

with less reflection from the waveguide and/or iris apparatuses would be required. Hence,

future experiments might benefit from a square waveguide and sufficiently large wafer such

that any affects from the apparatus holding the wafer are eliminated.

Ultimately, many questions about the QHE also remain, especially for fractional states.

Quantized Faraday rotation offer promising insights into the rich world of quantum phases

potentially leading to new insights for 21st century physics, engineering, and beyond.
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APPENDIX



Appendix A

Wafer cleaving process

The following steps outline how to cleave a wafer by hand.

Materials needed:

1. non-metal tweezers (I like the static-guard plastic type seen here),

2. lint-free lab wipe (the plastic clean room type offer proper cushioning),

3. a diamond tip cutter,

4. a curved razor with handle (see images).
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Chapter A. Wafer cleaving process

Figure A.1 Steps to cleave a wafer: left, top-bottom then right, top-
bottom. Left: We start with a large rectangular GaAs wafer we want to cleave
to the size of the small piece beside it. Hold the wafer face up very gently with the
tweezers. With the diamond tip pen, score just the edge of the wafer at the desired
width. You should use barely any pressure, just enough so that you can see a short
line where you scored. Right: with the tweezers, flip the wafer upside down and
fold some the wipe over top. Remembering where you scored the wafer, place the
blade down on the cloth just below the edge of the wafer. Slowly and quite gently
roll the blade upwards towards its tip. You do not have to apply pressure in any
part of the process. The wafer will break along the crystal axis where you left the
score.
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Appendix B

Wafer cleaning recipe

The following process was used to clean wafers for mounting in flip chip devices. Always

make careful note of solvent flashpoint temperatures. If you are concerned about the wafer

breaking due to the mechanical stress of sonication, you can line the beaker with a clean

room -grade wipe.

1. In a small beaker, sonicate the wafer in trichloroethylene (TCE) at 30o C for 10 minutes.

Note, this is a strong solvent only necessary if you suspect there is grease on the wafer,

2. Sonicate in methanol at 30o C for 10 minutes,

3. Sonicate in isopropanol (IPA) at 50o C for 5 minutes,

4. Spray with deionized water, careful not to drop the wafer,

5. Spray dry with nitrogen, or air, to further prevent droplet residue.
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Appendix C

McGill Faraday experiment waveguide

parts

Details of the parts ordered from Cernex Wave in California, USA from Chapter 3.

Figure C.1 Details of the parts ordered from Cernex Wave.
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Appendix D

Sample wafer growth sheet

A sample growth sheet for high-mobility wafer from Dr. Loren Pfeiffer at Princeton Univer-

sity. Each line documents a different layer deposited under vacuum in the molecular beam

epitaxy (MBE) process, in chronological order from line 1 through line 340. Thickness, in

the third column, is listed in Angstroms. In the wafer growth sheet shown here, the quan-

tum well is 30 nm of GaAs with 78 nm thick AlGaAs walls on either side. The well is set

back ∼195 nm from the wafer’s surface. Mobility and density have been tested by the wafer

grower, seen in the notes at the bottom of the sheet.
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Chapter D. Sample wafer growth sheet

Figure D.1 Sample growth sheet from Dr. Loren Pfeiffer.
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